
Ракете сообщили на полюсе Земли вертикальную скорость V=1.6 км/с. Зная радиус Земли R = 6400 км и
ускорение свободного падения g=9.8 м/с2, найдите высоту h (в км), на которую поднимется ракета. Сопротивлением воздуха пренебречь. Подсказка: воспользоваться законом сохранения энергии. Ответ округлите до целого числа.

Ответы на вопрос

mv^2/2=mgh
сократим и выразим h:
h=v^2/2g=/(1600)^2/2*9.8=137634



Calculation of Rocket Height
To find the height to which the rocket will rise, we can use the law of conservation of energy. The total mechanical energy of the rocket is conserved throughout its motion. At the initial position, the rocket has kinetic energy due to its vertical velocity, and at the highest point of its trajectory, it has potential energy due to its height.
The formula for the conservation of energy is:
Initial kinetic energy + Initial potential energy = Final kinetic energy + Final potential energy
The initial kinetic energy is given by:
KE_initial = (1/2) * m * V^2
where: - m is the mass of the rocket (which we can assume to be constant) - V is the vertical velocity of the rocket (given as 1.6 km/s)
The initial potential energy is given by:
PE_initial = m * g * h_initial
where: - g is the acceleration due to gravity (given as 9.8 m/s^2) - h_initial is the initial height of the rocket (which we need to find)
At the highest point of the rocket's trajectory, the final kinetic energy is zero because the vertical velocity becomes zero. Therefore, the final potential energy is equal to the total mechanical energy of the rocket.
PE_final = m * g * h_final
Setting up the conservation of energy equation:
(1/2) * m * V^2 + m * g * h_initial = 0 + m * g * h_final
Simplifying the equation:
(1/2) * V^2 + g * h_initial = g * h_final
Now we can solve for the height h_final:
h_final = (1/2) * V^2 / g + h_initial
To find the height h_final, we need to know the initial height h_initial. In this case, the rocket is launched from the surface of the Earth, so the initial height is equal to the radius of the Earth (R = 6400 km).
Substituting the given values into the equation:
h_final = (1/2) * (1.6 km/s)^2 / (9.8 m/s^2) + 6400 km
Converting the units to match:
h_final = (1/2) * (1600 m/s)^2 / (9.8 m/s^2) + 6400 km
Calculating the height:
h_final = 1280000 m^2/s^2 / 9.8 m/s^2 + 6400 km
h_final = 130612.24 m + 6400 km
h_final = 130612.24 m + 6400000 m
h_final = 6530612.24 m
Rounding the answer to the nearest whole number:
h_final ≈ 6530612 km
Therefore, the rocket will rise to a height of approximately 6530612 km.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili