
Трудности классической физики в объяснении явления фотоэффекта


Ответы на вопрос

Ответ:
самая большая проблема объяснить фотоэффект в теории: корпускулярно-волновой дуализм светового излучения (т.е. свет можно рассматривать как волну и как частицы).
Так же из начал квантовой физики получаем, что наблюдатель непосредственно влияет на результат эксперимента (например если светить в 2 равные по размеру прямоугольные щели, то человек видит 4 световых "пятна", а камера одно).
Также "оптику" долгое время не давали изучать физикам из-за религиозных причин (запрет изучения наук), и если бы не чума, то ученые на "самоизоляции" так природу света бы и и не открыли))
Объяснение:
как-то так,



Difficulties in Explaining the Photoelectric Effect in Classical Physics
The photoelectric effect is a phenomenon in which electrons are emitted from a material when it is exposed to light. It was first observed by Heinrich Hertz in 1887 and later explained by Albert Einstein in 1905, for which he received the Nobel Prize in Physics in 1921.
Classical physics, which includes theories such as classical electromagnetism and wave theory, faced several difficulties in explaining the photoelectric effect. Here are some of the key challenges:
1. Wave Theory of Light: According to classical wave theory, light is considered to be a continuous wave that carries energy. However, when light is shone on a metal surface, the photoelectric effect shows that electrons are emitted instantaneously, rather than gradually absorbing energy and being released as predicted by the wave theory.
2. Energy Distribution: Classical physics predicted that the energy of the emitted electrons should depend on the intensity of the light, meaning that increasing the intensity of the light should increase the energy of the emitted electrons. However, experimental observations showed that the energy of the emitted electrons depends on the frequency of the light, not its intensity.
3. Threshold Frequency: Another challenge was the observation of a threshold frequency below which no electrons are emitted, regardless of the intensity of the light. Classical physics could not explain why there is a minimum frequency required for the photoelectric effect to occur.
4. Electron Emission Time: Classical physics predicted that there should be a time delay between the absorption of light and the emission of electrons. However, experiments showed that the emission of electrons is instantaneous, suggesting that the energy transfer from light to electrons is quantized.
Explanation in Quantum Mechanics
The difficulties faced by classical physics in explaining the photoelectric effect were resolved with the development of quantum mechanics. Albert Einstein's explanation of the photoelectric effect laid the foundation for quantum theory.
In quantum mechanics, light is considered to be composed of discrete packets of energy called photons. The energy of a photon is directly proportional to its frequency, as given by the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the light.
When light interacts with a material, the photons can transfer their energy to the electrons in the material. If the energy of a photon is greater than the binding energy of an electron in the material, the electron can be ejected from the material. The energy of the emitted electron is given by the equation E = hf - φ, where φ is the work function of the material.
The key points to note are:
- The energy of the emitted electrons depends on the frequency of the light, not its intensity. - There is a threshold frequency below which no electrons are emitted, regardless of the intensity of the light. - The emission of electrons is instantaneous, with no time delay between the absorption of light and the emission of electrons.
Quantum mechanics successfully explains these observations and provides a more accurate description of the photoelectric effect compared to classical physics.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili