
Два когерентных источника звука колеблются в одинаковых фазах. В точке, отстоящей от первого
источника на 2,1 м, а от второго на 2,27 м, звук не слышен. Скорость звука 340 м/с. Минимальная частота колебаний при которой это возможно равна … кГц.

Ответы на вопрос

одинаковых фазах. В точке, отстоящей от первого источника на яяяяяяяяяяяяяяяяяd1=2,1 м, а от второго на d2=2,27 м, звук не слышен.
Скорость звука V=340 м/с. Минимальная частота колебаний при которой это возможно f- ?
равна … кГц.
Звук не слышен если Δd=λ/2
V=λ*ν
λ=V/ν
Δd=V/2*ν
ν=V/2*Δd=340/2*(2,27-2.1)=340/2*0,17=1000 Гц=1 кГц
Ответ ν=1 кГц
100% гарантии



Calculation of the Minimum Frequency of Sound
To determine the minimum frequency of sound at which it is not audible at a certain point, we can use the formula for the wavelength of sound:
Wavelength = Speed of Sound / Frequency
Given that the speed of sound is 340 m/s, and the distances from the first and second sources are 2.1 m and 2.27 m respectively, we can calculate the wavelength at these distances.
For the first source, the wavelength is:
Wavelength1 = Speed of Sound / Frequency1
For the second source, the wavelength is:
Wavelength2 = Speed of Sound / Frequency2
Since the two sources are in phase, the difference in the distances traveled by the sound waves from the two sources to the point where the sound is not audible is equal to an integer multiple of the wavelength.
The difference in distances is:
Difference in Distances = Distance from First Source - Distance from Second Source
Therefore, we have the equation:
Difference in Distances = n * (Wavelength1 - Wavelength2)
where n is an integer.
To find the minimum frequency at which the sound is not audible, we need to find the smallest positive value of n that satisfies the equation.
Let's calculate the minimum frequency using the given distances and the speed of sound.
The distance from the first source is 2.1 m, and the distance from the second source is 2.27 m. Therefore, the difference in distances is:
Difference in Distances = 2.1 m - 2.27 m = -0.17 m
To find the minimum frequency, we need to find the smallest positive value of n that satisfies the equation:
-0.17 m = n * (Wavelength1 - Wavelength2)
Since the two wavelengths are inversely proportional to the frequencies, we can rewrite the equation as:
-0.17 m = n * (Speed of Sound / Frequency1 - Speed of Sound / Frequency2)
Simplifying the equation, we get:
-0.17 m = n * Speed of Sound * (1 / Frequency1 - 1 / Frequency2)
Now, we can substitute the given values into the equation and solve for the minimum frequency.
-0.17 m = n * 340 m/s * (1 / Frequency1 - 1 / Frequency2)
Let's solve for the minimum frequency.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili