Вопрос задан 23.07.2018 в 22:39. Предмет Физика. Спрашивает Романчук Диана.

К концам невесомой нерастяжимой нити через невесомый неподвижный блок подвешены два груза массами

по 100 грамм каждый. на один из грузов положен перегрузок массой 50 грамм. При этом вся система приходит в движение. Найдите ускорение с которым движутся грузы и перегрузок. Какова сила натяжения нити?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Галимьянов Руслан.

Простите ни чем не могу помочь

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have a system consisting of two masses, each weighing 100 grams, suspended by an inextensible thread passing over a frictionless and weightless pulley. One of the masses has an additional load of 50 grams placed on it. The system is set into motion. We need to find the acceleration of the masses and the tension in the thread.

Solution

To solve this problem, we can apply Newton's second law of motion and consider the forces acting on each mass.

Let's denote the mass with the additional load as Mass A and the other mass as Mass B.

Forces Acting on Mass A

1. The weight of Mass A: This force acts downwards and is equal to the product of the mass and acceleration due to gravity (g). 2. The tension in the thread: This force acts upwards and is denoted as Tension A.

Forces Acting on Mass B

1. The weight of Mass B: This force acts downwards and is equal to the product of the mass and acceleration due to gravity (g). 2. The tension in the thread: This force acts upwards and is denoted as Tension B.

Since the masses are connected by an inextensible thread passing over a frictionless and weightless pulley, the tension in the thread is the same on both sides.

Equations

Using Newton's second law of motion, we can write the following equations:

For Mass A: - Tension A - Weight of Mass A = Mass A * Acceleration

For Mass B: - Weight of Mass B - Tension B = Mass B * Acceleration

Since the tension in the thread is the same on both sides, we can write: - Tension A = Tension B = Tension

Solving the Equations

Substituting the values into the equations, we have: - Tension - Mass A * g = Mass A * Acceleration - Mass B * g - Tension = Mass B * Acceleration

Adding the two equations, we get: - (Mass B - Mass A) * g = (Mass A + Mass B) * Acceleration

Simplifying, we find: - Acceleration = (Mass B - Mass A) * g / (Mass A + Mass B)

Calculation

Given that Mass A = Mass B = 100 grams and the additional load is 50 grams, we can substitute the values into the equation to find the acceleration.

- Mass A = 100 grams = 0.1 kg - Mass B = 100 grams = 0.1 kg - Additional load = 50 grams = 0.05 kg

Substituting the values, we have: - Acceleration = (0.1 kg - 0.1 kg) * 9.8 m/s^2 / (0.1 kg + 0.1 kg) = 0 m/s^2

Therefore, the acceleration of the masses and the additional load is 0 m/s^2.

Tension in the Thread

To find the tension in the thread, we can use either of the equations for Mass A or Mass B.

Using the equation for Mass A: - Tension A - Weight of Mass A = Mass A * Acceleration - Tension - Mass A * g = Mass A * Acceleration - Tension = Mass A * (Acceleration + g)

Substituting the values, we have: - Tension = 0.1 kg * (0 m/s^2 + 9.8 m/s^2) = 0.98 N

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос