
К концам невесомой нерастяжимой нити через невесомый неподвижный блок подвешены два груза массами
по 100 грамм каждый. на один из грузов положен перегрузок массой 50 грамм. При этом вся система приходит в движение. Найдите ускорение с которым движутся грузы и перегрузок. Какова сила натяжения нити?

Ответы на вопрос

Простите ни чем не могу помочь



Problem Analysis
We have a system consisting of two masses, each weighing 100 grams, suspended by an inextensible thread passing over a frictionless and weightless pulley. One of the masses has an additional load of 50 grams placed on it. The system is set into motion. We need to find the acceleration of the masses and the tension in the thread.Solution
To solve this problem, we can apply Newton's second law of motion and consider the forces acting on each mass.Let's denote the mass with the additional load as Mass A and the other mass as Mass B.
Forces Acting on Mass A
1. The weight of Mass A: This force acts downwards and is equal to the product of the mass and acceleration due to gravity (g). 2. The tension in the thread: This force acts upwards and is denoted as Tension A.Forces Acting on Mass B
1. The weight of Mass B: This force acts downwards and is equal to the product of the mass and acceleration due to gravity (g). 2. The tension in the thread: This force acts upwards and is denoted as Tension B.Since the masses are connected by an inextensible thread passing over a frictionless and weightless pulley, the tension in the thread is the same on both sides.
Equations
Using Newton's second law of motion, we can write the following equations:For Mass A: - Tension A - Weight of Mass A = Mass A * Acceleration
For Mass B: - Weight of Mass B - Tension B = Mass B * Acceleration
Since the tension in the thread is the same on both sides, we can write: - Tension A = Tension B = Tension
Solving the Equations
Substituting the values into the equations, we have: - Tension - Mass A * g = Mass A * Acceleration - Mass B * g - Tension = Mass B * AccelerationAdding the two equations, we get: - (Mass B - Mass A) * g = (Mass A + Mass B) * Acceleration
Simplifying, we find: - Acceleration = (Mass B - Mass A) * g / (Mass A + Mass B)
Calculation
Given that Mass A = Mass B = 100 grams and the additional load is 50 grams, we can substitute the values into the equation to find the acceleration.- Mass A = 100 grams = 0.1 kg - Mass B = 100 grams = 0.1 kg - Additional load = 50 grams = 0.05 kg
Substituting the values, we have: - Acceleration = (0.1 kg - 0.1 kg) * 9.8 m/s^2 / (0.1 kg + 0.1 kg) = 0 m/s^2
Therefore, the acceleration of the masses and the additional load is 0 m/s^2.
Tension in the Thread
To find the tension in the thread, we can use either of the equations for Mass A or Mass B.Using the equation for Mass A: - Tension A - Weight of Mass A = Mass A * Acceleration - Tension - Mass A * g = Mass A * Acceleration - Tension = Mass A * (Acceleration + g)
Substituting the values, we have: - Tension = 0.1 kg * (0 m/s^2 + 9.8 m/s^2) = 0.98 N


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili