Вопрос задан 23.09.2023 в 15:42. Предмет Физика. Спрашивает Лучшев Максим.

Дротяне кільце радіусом 5 см розташоване в однорідному магнітному полі з індукцією 80 мТл

перпендикулярно до ліній індукції. Унаслідок рівномірного зменшення індукції магнітного поля до 30 мТл протягом 0,5 с у кільці виникла ЕРС індукції 628 мВ. Зі скількох витків проводу складається кільце?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пигасев Даниил.

Розв'язання на фото..........................


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вирішення цієї задачі використаємо закон Фарадея для індукованої електродвигунної сили (ЕДС):

E=dΦdt\mathcal{E} = -\frac{{d\Phi}}{{dt}},

де E\mathcal{E} - ЕДС індукції, Φ\Phi - магнітний потік, tt - час.

Магнітний потік через кільце залежить від кількості витків, площі кільця та магнітної індукції:

Φ=BAN\Phi = B \cdot A \cdot N,

де BB - магнітна індукція, AA - площа кільця, NN - кількість витків.

Ми знаємо, що B1=80×103B_1 = 80 \times 10^{-3} Тл, B2=30×103B_2 = 30 \times 10^{-3} Тл, t=0.5t = 0.5 с, E=628\mathcal{E} = 628 мВ =0.628= 0.628 В.

Також, радіус кільця r=5r = 5 см =0.05= 0.05 м.

Ми можемо записати експресію для початкового і кінцевого магнітних потоків:

Φ1=B1πr2N\Phi_1 = B_1 \cdot \pi r^2 \cdot N Φ2=B2πr2N\Phi_2 = B_2 \cdot \pi r^2 \cdot N

Тепер використовуючи першу і другу похідні, можна отримати значення ЕДС для початкового та кінцевого стану:

E1=dΦ1dt=πr2B1dNdt\mathcal{E}_1 = -\frac{{d\Phi_1}}{{dt}} = -\pi r^2 \cdot B_1 \cdot \frac{{dN}}{{dt}} E2=dΦ2dt=πr2B2dNdt\mathcal{E}_2 = -\frac{{d\Phi_2}}{{dt}} = -\pi r^2 \cdot B_2 \cdot \frac{{dN}}{{dt}}

Тепер, підставивши відомі значення, ми отримаємо дві рівності:

0.628=3.14(0.05)280×103dNdt0.628 = 3.14 \cdot (0.05)^2 \cdot 80 \times 10^{-3} \cdot \frac{{dN}}{{dt}} 0.628=3.14(0.05)230×103dNdt0.628 = 3.14 \cdot (0.05)^2 \cdot 30 \times 10^{-3} \cdot \frac{{dN}}{{dt}}

Розв'язавши ці дві рівності, ми знайдемо значення dNdt\frac{{dN}}{{dt}}, тобто швидкість зміни кількості витків. Потім, можна буде використати це значення для визначення кількості витків NN.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос