Вопрос задан 15.07.2018 в 21:00. Предмет Физика. Спрашивает Хурманов Александр.

Шар радиуса R заряжен равномерно с объёмной плотностью заряда ρ. Определите модуль напряженности

поля в произвольной точке на расстоянии r от центра шара. Постройте график зависимости модуля напряженности электрического поля от расстояния до центра шара.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сысоева Ирина.

ЧЕРЕЗ ТЕОРЕМУ ГАУССА:

 \int_o^{S_\Sigma} { E \, dS } = \frac{ | q_\Sigma | }{ \varepsilon_o \varepsilon }
для произвольной замкнутой поверхности окружающий некторый заряд;

Ясно, что поле вокруг такого тела обладает сферической симметрией, а значит поле в любой точке сонаправлено в радиус-вектором, проведённым из центра сферы. Причём, исходя из той же сферической симметри – на равных расстояниях от сферы в любой точке поле имеет одну и ту же напряжённость.

Поэтому для точек     r \geq R    за пределами шара мы можем записать:

 4 \pi r^2 E_> = \frac{ | q_\Sigma | }{ \varepsilon_o \varepsilon } = \frac{4 \pi | \rho | R^3}{3 \varepsilon_o \varepsilon } \ ;

 E_> = \frac{ | \rho | R^3 }{ 3 \varepsilon_o \varepsilon r^2 } = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } \ ;

А для точек     r \leq R    внутри шара мы можем записать:

 4 \pi r^2 E_< = \frac{ | q_r | }{ \varepsilon_o \varepsilon } = \frac{4 \pi | \rho | r^3}{3 \varepsilon_o \varepsilon } \ ;

 E_< = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r \ ;



ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ ШАРА:

Для точек     r \geq R    за пределами шара мы можем записать:

 E_> = \frac{k}{\varepsilon} \cdot \frac{ | q_\Sigma | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | R^3}{3 r^2} \ ;

 E_> = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } = \frac{ | \rho | R^3 }{3 \varepsilon_o \varepsilon r^2} \ ;

А для точек     r \leq R    внутри шара мы можем записать:

 E_< = \frac{k}{\varepsilon} \cdot \frac{ | q_r | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | r^3}{3 r^2} \ ;

 E_< = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r \ ;




ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ СФЕРЫ:

Напряжённость равномерно заряженной сферы за её пределеами равна напряжённости точечного заряда, расположенного вместо сферы в её центре. Тогда:

Для точек     r \geq R    за пределами шара мы можем записать:

 E_> = \frac{k}{\varepsilon} \cdot \frac{ | q_\Sigma | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | R^3}{3 r^2} \ ;

 E_> = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } = \frac{ | \rho | R^3 }{3 \varepsilon_o \varepsilon r^2} \ ;

А для точек     r \leq R    внутри шара мы можем записать:

 E_< = \frac{k}{\varepsilon} \cdot \frac{ | q_r | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | r^3 }{ 3 r^2 } \ ;

 E_< = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r \ ;




ОТВЕТ:

 E = \{
 = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r \ ,    при     r \leq R \ ;
 = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } = \frac{ | \rho | R^3 }{3 \varepsilon_o \varepsilon r^2} \ ,    при     r \geq R \ ; \}





ГРАФИК СМОТРИТЕ В ПРИЛОЖЕННОМ ФАЙЛЕ:



0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос