Вопрос задан 15.07.2023 в 10:32. Предмет Физика. Спрашивает Рубаняк Вадім.

Согласно современным данным, допустимое из опытов различие абсолютных величин зарядов электрона qe

и протона qp таково, что |(qp - qe)/q0| < 10^-21. Не может ли это различие обеспечить существование наблюдаемого магнитного момента Земли? Магнитное поле Земли Вз ~ 3*10^-5 Т, плотность р ~ 5*10^3 кг/м3. Считать, что для атомов, составляющих Землю, отношение относительной атомной массы А к атомному номеру Z порядка 2.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Богданов Ваня.

Ответ:

Нет, не может

Объяснение:

Если существует различие между зарядами электрона и протона, то Землю можно считать равномерно заряженным шаром с объемной плотностью заряда, равной:

\displaystyle \rho'=n\Delta q

где n - концентрация атомов:

\displaystyle n=\frac{\rho}{m_0}=\frac{\rho}{Zm_p+(A-Z)m_n}=\frac{\rho}{Z(m_p+m_n)}

Заряд одного атома:

\displaystyle \Delta q=Z\Delta q_0=10^{-21}Ze

Тогда, объемная плотность заряда:

\displaystyle \rho'=\frac{\rho}{Z(m_p+m_n)}10^{-21}Ze=\frac{10^{-21}\rho e}{m_p+m_n}

Заряд всей Земли:

\displaystyle Q=\rho'V=\frac{10^{-21}\rho e}{m_p+m_n}\frac{4}{3}\pi   R^3=\frac{10^{-21}*5000*1.6*10^{-19}*4*3.14*(6.4*10^6)^3}{3*2*1.67*10^{-27}} =

\displaystyle =2.6*10^{11} Кл

По аналогии с расчетом момента инерции шара, распределенный заряд также можно сконцентрировать вдоль кольца, с радиусом равным радиусу Земли и величиной:

\displaystyle q=\frac{2}{5}Q=1.04*10^{11} Кл

Линейная плотность заряда такого кольца:

\displaystyle \tau=\frac{q}{C}=\frac{q}{2\pi R}=\frac{1.04*10^{11}}{6.28*6.4*10^6}=2588 Кл/м

За единицу времени, через фиксированное поперечное сечение кольца проходит заряд (он же ток, создаваемый кольцом):

\displaystyle I=\tau L=\tau \omega R

Произведение ωR есть не что иное, как линейная скорость точек на экваторе, равная 465 м/с, таким образом, ток:

\displaystyle I=2588*465=1.2*10^6 А

Оценим создаваемое им в центре магнитное поле:

\displaystyle B=\frac{\mu_0I}{2R}=\frac{4\pi *10^{-7}*1.2*10^6}{2*6.4*10^6}=1.18*10^{-7} Тл

Сравнивая это значение с фактическим, видим, что оно на два порядка меньше, значит различие между зарядами электрона и протона, даже если бы оно было, не смогло бы создать магнитного поля Земли.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для ответа на этот вопрос нам необходимо рассмотреть связь между магнитным моментом Земли и различием зарядов электрона и протона.

Магнитный момент (μ) частицы, обусловленный её орбитальным движением электрона, определяется формулой:

μ = -e * L / (2 * m)

где e - заряд электрона, L - орбитальный момент импульса, m - масса электрона.

Возможное различие зарядов электрона и протона (qe и qp) будет влиять на магнитные моменты, так как они связаны с зарядом электрона. Однако в данном случае различие очень мало: |(qp - qe)/q0| < 10^-21, где q0 - элементарный заряд.

Различие в заряде, настолько малое, не будет иметь заметного влияния на магнитный момент Земли. Магнитный момент Земли обусловлен орбитальным движением электронов в атомах, составляющих Землю, а не различием зарядов электрона и протона. Фактически, различие зарядов между электроном и протоном может играть роль в других процессах и явлениях, но не в образовании магнитного момента Земли.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос