
Искусственный спутник Земли удаляется от её поверхности. Укажите, как изменится расстояние до
центра земли при уменьшении силы тяготения, действующей со стороны Земли на указанный космический корабль в 16 раз. Помогите пожалуйста

Ответы на вопрос

Ответ:
Объяснение:
Сила тяготения определяется как массой тела, так и ускорением свободного радения. Поскольку масса спутника не изменяется, то запишем выражения для ускорения свободного падения вблизи поверхности Земли и на расстоянии h от ее поверхности:
g₁ = G·M₃ / (R₃)²
g₂ = G·M₃ / (R₃+h)²
Находим отношение:
g₁ / g₂ = (R₃+h)² / R₃²
16 = ((R₃+h)/R₃ )²
Извлекаем квадратный корень:
4 = (R₃+h)/R₃
Ответ: Уменьшится в 4 раза



Если искусственный спутник Земли удаляется от её поверхности, то его расстояние до центра Земли будет увеличиваться. В данном случае, уменьшение силы тяготения, действующей со стороны Земли на спутник, означает, что тяготение становится слабее.
Мы знаем, что сила тяготения пропорциональна обратному квадрату расстояния между центром Земли и спутником. Пусть сила тяготения при исходном расстоянии равна F, а новая сила тяготения после уменьшения в 16 раз будет равна 1/16 * F.
Для определения, во сколько раз изменится расстояние до центра Земли (d), воспользуемся законом сохранения энергии. Кинетическая энергия искусственного спутника не изменится, так как у него нет двигателей. Тогда изменение потенциальной энергии будет компенсировано изменением кинетической энергии.
Из закона сохранения энергии:
Изначальная потенциальная энергия + Изначальная кинетическая энергия = Новая потенциальная энергия + Новая кинетическая энергия
Можем сказать, что изначальная кинетическая энергия и новая кинетическая энергия равны нулю, так как искусственный спутник движется по орбите в условиях свободного падения. Таким образом, уравнение принимает следующий вид:
Изначальная потенциальная энергия = Новая потенциальная энергия
Математически, потенциальная энергия можно выразить как:
Потенциальная энергия = - G * (масса Земли) * (масса спутника) / (расстояние до центра Земли)
где G - гравитационная постоянная, масса Земли и масса спутника остаются постоянными.
Таким образом, уравнение можно переписать как:
- G * (масса Земли) * (масса спутника) / (изначальное расстояние) = - G * (масса Земли) * (масса спутника) / (новое расстояние)
Масса спутника сокращается, и оставляем уравнение для изменения расстояния:
1 / (изначальное расстояние) = 1 / (новое расстояние)
Теперь, если у нас изначальное расстояние равно r (расстояние от поверхности Земли до центра спутника), то новое расстояние будет:
новое расстояние = 16 * r
Таким образом, расстояние до центра Земли увеличится в 16 раз при уменьшении силы тяготения, действующей на спутник.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili