Вопрос задан 05.07.2023 в 07:56. Предмет Физика. Спрашивает На Миша.

Гидравлический пресс, заполненный водой, имеет цилиндры с поршнями, площади поперечного сечения

которых 1000см2 и 500см2. В начальный момент поршни находятся на одном горизонтальном уровне. На поршень большей площади встает человек. При этом поршень опускается на 0,3 м. Какова масса человека? Массой поршней пренебречь.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маласов Михаил.

Ответ:

90 кг

Объяснение:

Смотри в файле


0 1
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем использовать принцип Паскаля, который утверждает, что изменение давления в жидкости передается без изменения величины по всему объему жидкости. Мы можем записать это следующим образом:

P1=P2P_1 = P_2,

где P1P_1 - давление на поршень большей площади, и P2P_2 - давление на поршень меньшей площади.

Давление PP в жидкости можно выразить через силу FF и площадь AA следующим образом:

P=FAP = \frac{F}{A}.

Изначально поршни находятся на одном горизонтальном уровне, и давление на них одинаково:

P1=P2P_1 = P_2.

Так как мы пренебрегаем массой поршней, сила, действующая на каждый поршень, будет равна весу жидкости, находящейся над поршнем:

F1=ρgh1A1F_1 = \rho \cdot g \cdot h_1 \cdot A_1, F2=ρgh2A2F_2 = \rho \cdot g \cdot h_2 \cdot A_2,

где:

  • F1F_1 и F2F_2 - силы, действующие на поршни 1 и 2 соответственно,
  • ρ\rho - плотность воды,
  • gg - ускорение свободного падения,
  • h1h_1 и h2h_2 - высоты столбцов воды над поршнями 1 и 2 соответственно,
  • A1A_1 и A2A_2 - площади поперечных сечений поршней 1 и 2 соответственно.

Так как давление одинаково на обоих поршнях, то F1=F2F_1 = F_2, что означает:

ρgh1A1=ρgh2A2\rho \cdot g \cdot h_1 \cdot A_1 = \rho \cdot g \cdot h_2 \cdot A_2.

Так как площадь A1A_1 больше, чем A2A_2, выразим h2h_2 через h1h_1:

h2=A1A2h1h_2 = \frac{A_1}{A_2} \cdot h_1.

Мы знаем, что разница в высотах поршней h1h2h_1 - h_2 равна 0.3 м:

h1h2=0.3мh_1 - h_2 = 0.3 \, \text{м}.

Подставляя выражение для h2h_2 в это уравнение:

h1A1A2h1=0.3мh_1 - \frac{A_1}{A_2} \cdot h_1 = 0.3 \, \text{м}, h1(1A1A2)=0.3мh_1 \left(1 - \frac{A_1}{A_2}\right) = 0.3 \, \text{м}.

Теперь мы можем найти h1h_1:

h1=0.3м1A1A2h_1 = \frac{0.3 \, \text{м}}{1 - \frac{A_1}{A_2}}.

Зная h1h_1, мы можем найти массу человека mm как массу жидкости, перемещенной вниз:

m=ρV=ρA1h1m = \rho \cdot V = \rho \cdot A_1 \cdot h_1.

Подставляя значения:

m=ρA10.3м1A1A2m = \rho \cdot A_1 \cdot \frac{0.3 \, \text{м}}{1 - \frac{A_1}{A_2}}

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Предметы
Задать вопрос