 
Из воды медленно с постоянной скоростью вытаскивают бетонный блок объемом 0,5м³. Когда под водой
осталось 40% всего объема блока, трос оборвался. Определить предельное натяжение, которое выдерживает трос. 0
        0
         0
        0
    Ответы на вопрос
 
        Предел натяжения троса будет зависеть от плотности бетона. Она может быть различной. Вам нужно будет просто подставить то значение плотности, которое вы обычно используете в задачах.
Дано:
V = 0,5 м³
p_min = 40%
ρ₁ = ваше значение плотности бетона
ρ₂ = 1000 кг/м³ - плотность воды
g = 10 Н/кг
T_max - ?
Решение:
Блок вытаскивают медленно - это значит, что сила, которую прикладывают для этого, должна быть равна по модулю весу блока, равному разности силы тяжести и силы выталкивания (Архимедовой силы), которые действуют на блок. Кроме того, эта сила передаётся тросу по Третьему закону Ньютона. То есть сила натяжения троса Т равна по модулю весу блока P и должна уравновешивать силу тяжести mg и силу выталкивания Fa:
T = P = mg - Fa
Пока блок поднимается в воде, трос выдерживает его вес. Выдерживает трос и тогда, когда под водой остаётся 40% объёма блока. В этот момент блок весит больше. Он вообще начинает весить больше, как только объём погруженной его части начинает уменьшаться. Что это значит. Дело в том, что на остальную часть блока (100% - 40% = 60%), т.к. она находится уже не в воде, сила Архимеда не действует. А действующая на нижнюю часть блока сила Архимеда является предельной, т.к. при такой и только такой выталкивающей силе трос ещё выдерживает предельное натяжение.
Распишем подробно уравнение для T_max:
T_max = mg - Fa_min
m = ρ₁*V
Fa_min = ρ₂*g*V_min, где V_min - это минимальный объём погруженной части, при котором трос ещё может выдержать вес блока.
V_min = (V/100)*p_min => Fa = ρ₂*g*(V/100)*p_min, где p_min - это минимальный процент объёма всего блока, который остаётся погруженным в воду, и при этом трос ещё может выдержать вес блока.
Выходит, что:
T_max = ρ₁*V*g - ρ₂*g*(V/100)*p_min = V*g*(ρ₁ - ρ₂*p_min/100)
T_max = V*g*(ρ₁ - ρ₂*p_min/100) - предельное натяжение троса будет зависеть от плотности бетона: чем больше плотность бетона ρ₁, тем больше будет T_max - это при неизменном условии, что трос рвётся, когда под водой остаётся 40% объёма блока.
Я приведу решение с плотностью 2500 кг/м³. Если у вас другое значение, то просто подставьте его вместо ρ₁ в конечной формуле.
T_max = V*g*(ρ₁ - ρ₂*p_min/100) = 0,5*10*(2500 - 1000*40/100) = 5*(2500 - 400) = 5*2100 = 10500 Н = 10,5 кН
Ответ: 10,5 кН.
 0
                    0
                     0
                    0
                 
            Для того чтобы определить предельное натяжение троса, необходимо рассмотреть силы, действующие на бетонный блок и трос в момент обрыва.
Сначала определим массу бетонного блока. Масса блока равна его объему, умноженному на плотность бетона. Плотность бетона обычно около 2400 кг/м³:
Масса блока = объем блока x плотность бетона Масса блока = 0,5 м³ x 2400 кг/м³ = 1200 кг
Теперь определим силу тяжести, действующую на блок в момент обрыва троса. Сила тяжести равна массе блока, умноженной на ускорение свободного падения (g), которое приближенно равно 9,81 м/с²:
Сила тяжести = Масса блока x g Сила тяжести = 1200 кг x 9,81 м/с² ≈ 11772 Н (ньютон)
Таким образом, сила тяжести, действующая на блок, составляет около 11772 Н. Это и есть предельное натяжение, которое должен выдержать трос, чтобы поддерживать бетонный блок в данной ситуации.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			