Вопрос задан 20.06.2023 в 04:20. Предмет Физика. Спрашивает Янушкевич Маша.

1. Скорость точек экватора Солнца при его вращении вокруг своей OCH 2 км/с. Определите

центростремительное ускорение точек экватора. Радиус Солнца 6,96-10° м. Ответ представьте в единица SI и округлите до тысячных. 2. Маховое колесо диаметром 1,8 м совершает 50 оборотов в минуту. Определите ускорение точек на ободе колеса. При вычисления. принять та 10. 3. Определите в SI длину лопасти винта вертолета, если винт делает 50 оборотов за 10 секунд, и центростремительное ускорение точек на конце винта равно 2 км/с.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Олефир Илья.

Ответ:

1.а - центростремительное ускорение (фото прикрепил)

2.Найдем период:

n=50 об

t = 1 мин = 60 с

R=D/2 = 1,8/2 = 0,9 м

T = t/n = 60/50 = 1,2 c

Скорость  

V = 2*π*R / T

Ускорение:

a = V²/R = 4*π²*R²/(T²*R)=4*π²*R/T² = 4*10*0,9/1,2² = 25 м/с²

3. Ответ:

2 м

Объяснение:

R - ?

N = 50

t = 10 c

a = 2 км/с² = 2000 м/с²

_____________________

1) a = υ² / R  -  центростремительное ускорение

2) υ = 2πR/T - ленейная  скорость

3) T= t/N - период

Подставим 3) и  2)  в  1)

4) a = 4π²RN²/ t² ⇒  R = a* t²/ (4π²N²)

R = 2000 * 10²/(4*3.14²*50²) = 2 м


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. Скорость точек экватора Солнца при его вращении вокруг своей оси составляет 2 км/с. Чтобы определить центростремительное ускорение точек экватора, нам необходимо использовать следующую формулу:

a = v^2 / r

где a - центростремительное ускорение, v - скорость точек экватора и r - радиус Солнца.

Заменяя значения в формуле, получим:

a = (2 км/с)^2 / (6,96 * 10^8 м) = 4 км^2/с^2 / (6,96 * 10^8 м)

Данный ответ нужно представить в СИ единицах и округлить до тысячных:

a ≈ 5,74 * 10^-7 м/с^2

2. Диаметр махового колеса равен 1,8 м, а колесо делает 50 оборотов в минуту. Чтобы найти ускорение точек на ободе колеса, мы можем использовать следующую формулу:

a = w^2 * r

где a - ускорение точек на ободе колеса, w - угловая скорость колеса и r - радиус колеса.

Угловая скорость колеса можно найти, зная, что колесо делает 50 оборотов в минуту. Количество оборотов в секунду равно:

ω = (50 оборотов/мин) * (2π рад/оборот) * (1/60 мин/с)

Замечание: 2π радианов соответствуют одному полному обороту.

Подставляя это значение и остальные в формулу, получим:

a = (50 об/мин * 2π рад/об) * (1/60 мин/с) * (1,8 м/2)

При вычислениях примем значения:

π ≈ 3,14159 1,8 м = 180 см

Таким образом,

a = (π * 50 * 1,8) / 60 ≈ 4,712 м/с^2

3. Для определения длины лопасти винта вертолета, при условии что винт делает 50 оборотов за 10 секунд, и центростремительное ускорение на конце винта равно 2 км/с, мы можем использовать следующую формулу:

a = v^2 / r

где a - центростремительное ускорение, v - скорость на конце винта и r - радиус лопасти винта.

Первым делом нужно привести центростремительное ускорение в СИ единицы:

2 км/с = 2000 м/с

Затем мы можем использовать формулу:

2000 м/с = v^2 / r

Для ускорения на проходимом пути в 50 оборотов за 10 секунд, угловая скорость будет равна:

ω = (50 оборотов/10 секунд) * (2π радианов/отомков) = 10π радиан/с

Так как скорость на конце винта равна v = r * ω, мы можем переписать уравнение:

2000 м/с = (r * ω)^2 / r

Упрощение уравнения даст:

2000 м/с = r * ω^2

или

r = 2000 м/с / ω^2

Подставляя значение для ω получим:

r = 2000 м/с / (10π рад/с)^2

r ≈ 6,366 м

Таким образом, длина лопасти винта вертолета составляет приблизительно 6,366 м.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос