Вопрос задан 18.06.2023 в 23:13. Предмет Физика. Спрашивает Гончарова Катя.

Площадь прямоугольника равна 128см в квадрате.Найдите все стороны прямоугольника

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алипханов Ахмед.

Ответ:32

Объяснение:

128:4=32

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим стороны прямоугольника буквами. Пусть \(a\) - это длина прямоугольника, а \(b\) - его ширина. Тогда площадь прямоугольника равна произведению его длины на ширину:

\[S = a \cdot b\]

В вашем случае площадь равна 128 квадратным сантиметрам:

\[128 = a \cdot b\]

Чтобы найти все возможные комбинации длины и ширины, которые соответствуют этому уравнению, нужно рассмотреть делители числа 128. Ваше число 128 можно представить в виде произведения двух чисел:

\[128 = 1 \cdot 128 = 2 \cdot 64 = 4 \cdot 32 = 8 \cdot 16 = 16 \cdot 8 = 32 \cdot 4 = 64 \cdot 2 = 128 \cdot 1\]

Таким образом, есть несколько комбинаций длины и ширины прямоугольника:

1. \(a = 1\), \(b = 128\) 2. \(a = 2\), \(b = 64\) 3. \(a = 4\), \(b = 32\) 4. \(a = 8\), \(b = 16\) 5. \(a = 16\), \(b = 8\) 6. \(a = 32\), \(b = 4\) 7. \(a = 64\), \(b = 2\) 8. \(a = 128\), \(b = 1\)

Это все возможные пары сторон прямоугольника, которые обеспечивают площадь 128 квадратных сантиметров.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос