
ДАЮ 100 БАЛЛОВ СРОЧНО ПОМОГИТЕ!! Площади поперечных сечений медных проволок с одинаковыми длинами
равны 0,05 мм2 и 2 мм2. Какая из них обладает меньшим сопротивлением; во сколько раз? (показать решение задачи) 

Ответы на вопрос

Ответ:
меньш сопрот у второй проволоки в 40 раз
Объяснение:
R1= ρℓ/s1= ρℓ/0,05
R2= ρℓ/s2= ρℓ/2
R1/R2= ρℓ/0,05:ρℓ/2=2/0,05=40 (раз)



Calculation of Resistance for Copper Wires
To determine which of the two copper wires with different cross-sectional areas has a smaller resistance, we need to calculate the resistance for each wire. The resistance of a wire can be calculated using the formula:
Resistance (R) = Resistivity (ρ) x Length (L) / Cross-sectional Area (A)
Where: - Resistivity (ρ) is a material property of copper, which is constant. - Length (L) is the length of the wire. - Cross-sectional Area (A) is the area of the wire's cross-section.
Let's calculate the resistance for each wire and compare the results.
Calculation for the Wire with a Cross-Sectional Area of 0.05 mm²
Let's assume the length of the wire is 1 meter.
Using the formula, we can calculate the resistance:
Resistance (R) = Resistivity (ρ) x Length (L) / Cross-sectional Area (A)
The resistivity of copper is a constant value, which is approximately 1.68 x 10^-8 Ω·m.
Substituting the values into the formula:
Resistance (R) = (1.68 x 10^-8 Ω·m) x (1 m) / (0.05 x 10^-6 m²)
Simplifying the expression:
Resistance (R) = 33.6 Ω
Calculation for the Wire with a Cross-Sectional Area of 2 mm²
Using the same length of 1 meter, we can calculate the resistance for the wire with a cross-sectional area of 2 mm².
Substituting the values into the formula:
Resistance (R) = (1.68 x 10^-8 Ω·m) x (1 m) / (2 x 10^-6 m²)
Simplifying the expression:
Resistance (R) = 8.4 Ω
Comparison of Resistances
Comparing the calculated resistances, we find that the wire with a cross-sectional area of 0.05 mm² has a resistance of 33.6 Ω, while the wire with a cross-sectional area of 2 mm² has a resistance of 8.4 Ω.
Therefore, the wire with a cross-sectional area of 2 mm² has a smaller resistance compared to the wire with a cross-sectional area of 0.05 mm².
To determine the ratio between the resistances, we can divide the resistance of the wire with a larger cross-sectional area by the resistance of the wire with a smaller cross-sectional area:
Resistance Ratio = Resistance (2 mm²) / Resistance (0.05 mm²)
Resistance Ratio = 8.4 Ω / 33.6 Ω
Resistance Ratio = 0.25
Therefore, the wire with a cross-sectional area of 2 mm² has a resistance that is 0.25 times the resistance of the wire with a cross-sectional area of 0.05 mm².
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Физика







Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili