Вопрос задан 04.05.2021 в 23:55. Предмет Физика. Спрашивает Семенов Даниил.

В колебательном контуре происходят свободные незатухающие электромагнитные колебания. Зная, что

максимальный заряд конденсатора q=1*10 в-6 Кл, а максимальная сила тока I=10 А, найти, на волну какой длины настроен контур. Скорость электромагнитных волн с=3*10 в8 м\с.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Киселев Михаил.
Дано   q=q(t)    л- ?

пусть q=qм*сosw*t
i=q'=-qм*w*sinw*t
очевидно Iм=qм*w
w=Iм/qм=10/10^-6=10^7 (c^-1)

w=2*п*f

f=w/2*п=10*10^6/6,28=1,59*10^6 Гц

C=л*f
л=С/f=3*10^8/1,59*10^6=188,7 м - ответ
0 0
Отвечает Цветкова Александра.

Дано
: qм=1*10 ^-6 Кл, Iм=10А, с=3*10 ^8 м\с.λ-?
Решение.
Iм=qм*ω
ω=Iм/qм=10/10^-6=1*10^7 Гц.

ω=2*π*ν

ν=ω/(2*π)=1*10^7/6,28=1,59*10^6 Гц

с=λ*ν
λ=с/ν=3*10^8/1,59*10^6=188,7 м.



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи необходимо использовать уравнения, описывающие основные характеристики колебательного контура:

  1. Ёмкостной закон: q = C * U, где q - заряд конденсатора, C - его ёмкость, U - напряжение на конденсаторе.

  2. Закон Ома: I = U / R, где I - сила тока, R - сопротивление контура, U - напряжение на контуре.

  3. Закон сохранения энергии: W = (1/2) * C * U^2 = (1/2) * L * I^2, где W - энергия, сохраняемая в контуре при колебаниях, L - индуктивность катушки.

Выразим из уравнения (2) напряжение на контуре: U = I * R. Подставим это выражение в уравнение (1) и получим: q = C * I * R.

Выразим из уравнения (3) индуктивность катушки: L = (1/2) * C * U^2 / I^2.

Теперь можно найти длину волны, на которую настроен контур. Она определяется по формуле: λ = c / f, где c - скорость света, f - частота колебаний.

Частота колебаний определяется по формуле: f = 1 / (2π√(LC)), где L и C - индуктивность катушки и ёмкость конденсатора соответственно.

Подставим полученные выражения для L и C и получим: f = 1 / (2π√((1/2) * C * I^2 / C * I * R)) = 1 / (2π√(R / 2)).

Теперь можно найти длину волны: λ = c / f = 2πc√(R / 2).

Подставим известные значения: q = 1 * 10^-6 Кл, I = 10 А, c = 3 * 10^8 м/с.

Найдём сопротивление R по формуле: R = U / I = q / (C * I) = 1 * 10^-6 / (C * 10) = 1 / (C * 10^7) Ом.

Теперь можем найти длину волны: λ = 2πc√(R / 2) = 2π * 3 * 10^8 м/с * √(1 / (2 * C * 10^7) ) = 2π * 3 * 10^8 м/с * √(5 * 10^-8) ≈ 0.18 м (округляем до двух знаков после запятой).

Итак,

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос