Вопрос задан 07.02.2021 в 14:52. Предмет Физика. Спрашивает Momot Vlada.

СРОЧНО! Нужно подробное решение! Два математических маятника за одно и то же время совершают:

один — 40 полных колебаний, второй — 20 полных колебаний. Во сколько раз длина второго маятника больше длины первого? (4)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Леонов Саша.
Ну смотри  период колебаний матем маятника вычисляется по формуле
 T=2 \pi * \sqrt{ \frac{l}{g} }   где T-период колебаний    g-ускорение свободного падения  l-длина маятника
Найдём длину первого маятника
40=2*3.14* \sqrt{ \frac{l}{10} }
 \frac{l}{10} = \frac{1600}{38.1924}
l= \frac{16000}{38.1924} ≈419 Найдём длину второго маятника 20+3.14*2*[tex] \sqrt{ \frac{l}{10} }
 \frac{l}{10} = \frac{400}{38.1924}
l= \frac{4000}{38.1924} ≈105
 \frac{419}{105} ≈4- длина первого маятника в 4раза больше длины второго маятника т.е второй маятник в 4 раза меньше первого
Ответ:в 4 раза

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос