Вопрос задан 06.12.2023 в 03:46. Предмет Математика. Спрашивает Куприенко Илья.

Решите диаметр шарат1/2 дм. Вычислите объем шара V = 4/3 пR³ V = пd³/6 Используя обе формулы

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бродский Иосиф.

Ответ:

π/48 дм³

Пошаговое объяснение:

V=π*(1/2)³:6=π/8:6/1=π/8*1/6=π/48 дм³

R=D:2=1/2:2=1/2*1/2=1/4 дм.

V=4/3*π*(1/4)³=(4*π)/(3*4³)=π/(16*3)=π/48 дм³

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь с решением вашей задачи. Давайте начнем с вычисления диаметра шара.

Диаметр (d) шара равен 1/2 дециметра. Для удобства вычислений, переведем диаметр в сантиметры, так как формулы для объема шара обычно используют сантиметры.

1 дециметр равен 10 сантиметрам, поэтому диаметр шара будет:

d = 1/2 дм = 1/2 * 10 см = 5 см

Теперь, когда мы знаем диаметр, мы можем вычислить объем шара, используя две формулы:

1. Формула V = 4/3 * π * r³, где r - радиус шара. 2. Формула V = π * d³ / 6, где d - диаметр шара.

Для этого примера мы будем использовать обе формулы.

Вычисление объема шара с использованием формулы V = 4/3 * π * r³:

1. Найдем радиус шара (r). Радиус равен половине диаметра, поэтому:

r = d / 2 = 5 см / 2 = 2.5 см

2. Подставим значение радиуса в формулу и вычислим объем:

V = 4/3 * π * r³ = 4/3 * 3.14 * (2.5 см)³ ≈ 65.45 см³

Вычисление объема шара с использованием формулы V = π * d³ / 6:

1. Подставим значение диаметра в формулу и вычислим объем:

V = π * d³ / 6 = 3.14 * (5 см)³ / 6 ≈ 65.45 см³

Оба вычисления дают одинаковый результат, объем шара равен примерно 65.45 см³.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос