Різниця четвертого і другого членів геометричної прогресії дорівнює 30, а різниця четвертого й
третього членів дорівнює 24. Знайдіть суму п’яти перших членів прогресії.Ответы на вопрос
Ответ:
Пошаговое объяснение:
b4 - b2 = 30 => b1q³ - b1q = 30 => b1q(q² - 1) = 30
b4 - b3 = 24 => b1q³ - b1q² = 24 => b1q²(q -1) = 24
(b1q²(q - 1))/ b1q(q -1)(q + 1) =24/30
q/q+1 = 4/5
5q = 4(q + 1)
5q = 4q + 4
q = 4
Подставим q и найдем b1
b1q(q² - 1) = 30
b1 * 4( 4² - 1) = 30
b1 * 60 = 30
b1 = 30 : 60
b1 = 0,5
Знайдемо суму п’яти перших членів прогресії
Sn = (b1(1 -q^n))/1 - q
S5 = (0,5 ( 1 - 4^5))/1 - 4 = -511,5/(-3) = 170,5
Для вирішення цього завдання потрібно використовувати формули для геометричних прогресій.
Знайдемо різницю прогресії
Нехай перший член прогресії дорівнює a, а різниця прогресії дорівнює r.За умовою завдання, різниця між четвертим і другим членами прогресії дорівнює 30: a + 3r - (a + r) = 30 2r = 30 r = 15
Знайдемо другий член прогресії
Знаючи різницю прогресії (r) і другий член прогресії (a), можемо знайти другий член прогресії за формулою: a2 = a + r = a + 15Знайдемо третій член прогресії
Знаючи другий член прогресії (a2) і різницю прогресії (r), можемо знайти третій член прогресії за формулою: a3 = a2 + r = a2 + 15Знайдемо суму перших п'яти членів прогресії
Сума перших n членів геометричної прогресії може бути знайдена за формулою: Sn = a * (1 - r^n) / (1 - r)Знаючи перший член прогресії (a), різницю прогресії (r) і кількість членів прогресії (n), можемо знайти суму перших п'яти членів прогресії: S5 = a * (1 - r^5) / (1 - r)
Обчислення
Знаючи, що різниця між четвертим і третім членами прогресії дорівнює 24: a + 2r - (a2 + r) = 24 15 - a2 = 24 a2 = -9Тепер, коли ми знаємо значення різниці (r) і другого члену прогресії (a2), ми можемо обчислити значення першого члену прогресії (a): a = a2 - r = -9 - 15 = -24
Тепер, знаючи перший член прогресії (a) і різницю прогресії (r), ми можемо обчислити суму перших п'яти членів прогресії (S5): S5 = a * (1 - r^5) / (1 - r) S5 = -24 * (1 - 15^5) / (1 - 15)
Отже, сума перших п'яти членів прогресії дорівнює S5.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
