
Сколько четырехзначных чисел можно составить используя цифры 0,3,6 если цифры можно повторять


Ответы на вопрос

На первую позицию можно выбрать только одну из двух цифр, так как 0 не используется. На вторую, третью и четвертую позиции можно выбрать одну из трех цифр.
В результате можно составить 2 * 3 * 3 * 3 = 54 четырехзначных числа.



Чтобы определить количество четырехзначных чисел, которые можно составить, используя цифры 0, 3 и 6 и разрешая повторение цифр, давайте рассмотрим каждую позицию числа.
1. Тысячи (первая позиция): Так как нам нужны четырехзначные числа, первая цифра не может быть нулем. У нас есть две возможности для этой позиции: 3 или 6.
2. Сотни (вторая позиция): Здесь у нас три возможности: 0, 3, 6.
3. Десятки (третья позиция): Три возможности: 0, 3, 6.
4. Единицы (четвертая позиция): Три возможности: 0, 3, 6.
Таким образом, общее количество четырехзначных чисел, которые можно составить с использованием цифр 0, 3 и 6 с повторением, равно произведению количества возможных вариантов для каждой позиции:
\[2 \times 3 \times 3 \times 3 = 54.\]
Таким образом, можно составить 54 различных четырехзначных числа, используя цифры 0, 3 и 6 и разрешая повторение цифр.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili