Вопрос задан 18.11.2023 в 04:49. Предмет Математика. Спрашивает Кухта Татьяна.

(СРОЧНО КТО МОЖЕТ ДО 15:00 ОТПРАВИТЬ ОТВЕТ ЗАВИСИТ МОЯ ОЦЕНКА ЗА ТЕМУ!!) Сторони основи прямої

трикутної призми дорівнюють 10 см, 17 см і 21 см, а площа повної поверхнi призми - 312 см². Знайти довжину її бічного ребра.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бездольная Рита.

математичке здоровья пожелай, хахаха


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цього завдання використаємо формулу площі повної поверхні прямої трикутної призми, яка дорівнює: S = 2(A1 + A2 + A3), де S - площа повної поверхні призми, A1, A2, A3 - площі бічних граней призми.

Маємо такі відомі дані: A1 = (1/2)*10*17 = 85 см² (бо площа трикутника дорівнює половині добутку його основи та висоти), A2 = (1/2)*10*21 = 105 см², A3 = (1/2)*17*21 = 178.5 см², S = 312 см².

Підставляємо ці значення в формулу площі повної поверхні: 312 = 2*(85 + 105 + 178.5).

Знаходимо суму площ бічних граней: 312 = 2*(268.5), 312 = 537.

Отримали рівняння: 537 = 312.

Це рівняння є неправдивим, тому що сума площ бічних граней не може бути більшою за площу повної поверхні. Отже, умова задачі суперечить одному з відомих даних або розрахунків. Розв'язання задачі неможливе.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос