
(√3+I)^20= please solve this with using Moivre's formula


Ответы на вопрос

(√3+i)^20 can be divided using the Moivre formula:
(√3+i)^20 = (3^1/2+i)^(20) = (3^(1/2))^(20) + I*(3^(1/2)(19)) + ( I^2)^(20-319) = 3^10 + i*3^5 + 1^2
Thus, (√3 + i)^20 = 531.



Certainly! To solve the expression \((\sqrt{3} + i)^{20}\) using Moivre's formula, we'll follow these steps:
Moivre's formula states that for any complex number \(z = r(\cos \theta + i \sin \theta)\), the nth power of \(z\) can be found using the formula:
\[ z^n = r^n (\cos n\theta + i \sin n\theta) \]
In the given expression, \(\sqrt{3} + i\) can be represented in polar form as \(2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})\) since \(\sqrt{3}\) and \(i\) form a right-angled triangle with a 30-degree angle.
Now, let's use Moivre's formula to find \((\sqrt{3} + i)^{20}\):
\[ r = 2 \] \[ \theta = \frac{\pi}{6} \]
The formula for \(z^n\) becomes:
\[ (2^n) (\cos n\theta + i \sin n\theta) \]
Substitute \(n = 20\):
\[ (2^{20}) (\cos \frac{20\pi}{6} + i \sin \frac{20\pi}{6}) \]
Simplify the angle:
\[ (2^{20}) (\cos \frac{10\pi}{3} + i \sin \frac{10\pi}{3}) \]
Now, we know that \(\cos \frac{10\pi}{3} = \cos \frac{4\pi}{3}\) and \(\sin \frac{10\pi}{3} = -\sin \frac{4\pi}{3}\), so the expression becomes:
\[ (2^{20}) (\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}) \]
Finally, evaluate the cosine and sine values:
\[ (2^{20}) \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) \]
Multiply this by \(2^{20}\) to get the final result:
\[ -2^{20} - i 2^{20} \sqrt{3} \]
So, \((\sqrt{3} + i)^{20} = -2^{20} - i 2^{20} \sqrt{3}\).


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili