
3 измерения прямоугольного параллелепипеда равны 5 см 7 см и 6см


Ответы на вопрос

S поверхности = 2(5·7)+2(5·6)+2(7·6)=70+60+84=214(см²)
V = 5·7·6=210(см³).
Сумма длин всех рёбер = 5·4+6·4+7·4=20+24+28=72(см).
Всё, что можно сделать с этим.



Ответ:
210 см³ объём прямоугольного параллелепипеда
214 см² - площадь прямоугольного параллелепипеда
72 см - сумма длин всех рёбер прямоугольного параллелепипеда
11 см - длина диагонали прямоугольного параллелепипеда
Пошаговое объяснение:
Что вычислить - не совсем понятно. Поэтому:
V = abc = 5*7*6 = 210 см³ - объём прямоугольного параллелепипеда
S = 2(ab + ac + bc) = 2(5*7+5*6+6*7) = 2*107 = 214 см² - площадь прямоугольного параллелепипеда
L = 4(а + в + с) = 4(5+7+6) = 4*18 = 72 см - сумма длин всех рёбер прямоугольного параллелепипеда
d² = a² + b² + c²
d = √a² + b² + c² = √5²+7²+6² = √35+49+36 = √120 ≈ 11 см - длина диагонали прямоугольного параллелепипеда



Dimensions of a Rectangular Parallelepiped
The dimensions of a rectangular parallelepiped are given as 5 cm, 7 cm, and 6 cm.
To clarify, a rectangular parallelepiped is a three-dimensional figure with six rectangular faces. It is also known as a rectangular prism.
Let's calculate some properties of this rectangular parallelepiped.
Surface Area
The surface area of a rectangular parallelepiped can be calculated by summing the areas of all six faces.
The formula for the surface area of a rectangular parallelepiped is:
Surface Area = 2(ab + bc + ac)
where a, b, and c are the lengths of the three sides of the parallelepiped.
In this case, the lengths are given as 5 cm, 7 cm, and 6 cm.
Using the formula, we can calculate the surface area:
Surface Area = 2(5 * 7 + 7 * 6 + 5 * 6) = 2(35 + 42 + 30) = 2(107) = 214 cm².
Therefore, the surface area of the given rectangular parallelepiped is 214 cm².
Volume
The volume of a rectangular parallelepiped can be calculated by multiplying the lengths of its three sides.
The formula for the volume of a rectangular parallelepiped is:
Volume = length * width * height
In this case, the lengths are given as 5 cm, 7 cm, and 6 cm.
Using the formula, we can calculate the volume:
Volume = 5 * 7 * 6 = 210 cm³.
Therefore, the volume of the given rectangular parallelepiped is 210 cm³.
Diagonals
The diagonals of a rectangular parallelepiped can be calculated using the Pythagorean theorem.
The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
For a rectangular parallelepiped, there are three diagonals: the body diagonal, the face diagonal, and the space diagonal.
- The body diagonal connects opposite corners of the parallelepiped. - The face diagonal connects opposite corners of a face. - The space diagonal connects opposite corners of the parallelepiped, passing through the interior.
To calculate the length of the body diagonal, we can use the formula:
Body Diagonal = √(a² + b² + c²)
where a, b, and c are the lengths of the three sides of the parallelepiped.
In this case, the lengths are given as 5 cm, 7 cm, and 6 cm.
Using the formula, we can calculate the body diagonal:
Body Diagonal = √(5² + 7² + 6²) = √(25 + 49 + 36) = √110 = 10.49 cm.
To calculate the length of the face diagonal, we can use the formula:
Face Diagonal = √(a² + b²)
where a and b are the lengths of two sides of a face.
In this case, the lengths are given as 5 cm and 7 cm.
Using the formula, we can calculate the face diagonal:
Face Diagonal = √(5² + 7²) = √(25 + 49) = √74 = 8.60 cm.
To calculate the length of the space diagonal, we can use the formula:
Space Diagonal = √(a² + b² + c²)
where a, b, and c are the lengths of the three sides of the parallelepiped.
In this case, the lengths are given as 5 cm, 7 cm, and 6 cm.
Using the formula, we can calculate the space diagonal:
Space Diagonal = √(5² + 7² + 6²) = √(25 + 49 + 36) = √110 = 10.49 cm.
Therefore, the length of the body diagonal, face diagonal, and space diagonal of the given rectangular parallelepiped are approximately 10.49 cm, 8.60 cm, and 10.49 cm, respectively.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili