Вопрос задан 01.11.2023 в 00:43. Предмет Математика. Спрашивает Усольцева Эвелина.

Из рисунка известно, что BD - это биссектриса угла АВС, а ADВ равно СDB. Докажите, что

треугольник ADC равносторонний. СРОЧНО!!!!!!!!!!!!!!!!!!!!!!!!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рукосуев Александр.

Ответ:

Керек болып тұр ед көмектесінші пж пж

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Given Information:

From the given information, we know that BD is the angle bisector of angle ABC, and angle ADB is equal to angle CDB.

Proof:

To prove that triangle ADC is equilateral, we need to show that all three sides of the triangle are equal.

Let's consider the following steps:

1. Since BD is the angle bisector of angle ABC, we can conclude that angle ABD is equal to angle CBD. This is because the angle bisector divides the angle into two equal angles.

2. We are given that angle ADB is equal to angle CDB. Therefore, we can conclude that angle ABD is equal to angle CBD, which means that angle ABD is equal to angle ADB.

3. Using the fact that angle ABD is equal to angle ADB, we can conclude that triangle ABD is an isosceles triangle. In an isosceles triangle, the base angles are equal.

4. Now, let's consider triangle ADC. We have already established that angle ABD is equal to angle ADB. Since angle ADB is equal to angle CDB, we can conclude that angle ABD is equal to angle CDB.

5. From step 4, we can conclude that triangle BDC is also an isosceles triangle, with angle BCD equal to angle CBD.

6. In an isosceles triangle, the base angles are equal. Therefore, angle BCD is equal to angle CBD.

7. Since angle BCD is equal to angle CBD, and angle CBD is equal to angle ABD, we can conclude that angle BCD is equal to angle ABD.

8. From step 7, we can conclude that triangle BDA is an isosceles triangle, with angle ABD equal to angle BDA.

9. In an isosceles triangle, the base angles are equal. Therefore, angle ABD is equal to angle BDA.

10. Since angle ABD is equal to angle BDA, and angle BDA is equal to angle ADB, we can conclude that angle ABD is equal to angle ADB.

11. From step 10, we can conclude that triangle ADB is an equilateral triangle, with all three angles equal to 60 degrees.

12. In an equilateral triangle, all three sides are equal. Therefore, we can conclude that side AD is equal to side DB.

13. Since side AD is equal to side DB, and angle ADB is equal to angle CDB, we can conclude that triangle ADC is an equilateral triangle.

Therefore, we have proven that triangle ADC is

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос