
(x-5)2 (x+3) (x-4)>=0


Ответы на вопрос




To solve the inequality (x-5)^2 * (x+3) * (x-4) >= 0, you can use the following steps:
Find the critical points of the inequality by setting each factor equal to zero and solving for x:
a) (x-5)^2 = 0 (x-5)(x-5) = 0 x = 5
b) (x+3) = 0 x = -3
c) (x-4) = 0 x = 4
Plot these critical points on a number line:
-3 | 4 | 5
Test the intervals between and around the critical points. Choose test points in each interval and evaluate the expression (x-5)^2 * (x+3) * (x-4) at these points.
Test point in (-∞, -3): x = -4 ((-4 - 5)^2) * (-4 + 3) * (-4 - 4) = (9) * (-1) * (-8) = 72
Test point in (-3, 4): x = 0 ((0 - 5)^2) * (0 + 3) * (0 - 4) = (25) * (3) * (-4) = -300
Test point in (4, 5): x = 4.5 ((4.5 - 5)^2) * (4.5 + 3) * (4.5 - 4) = (0.25) * (7.5) * (0.5) = 0.9375
Test point in (5, ∞): x = 6 ((6 - 5)^2) * (6 + 3) * (6 - 4) = (1) * (9) * (2) = 18
Based on the test results, you can determine the solution to the inequality:
-3 | 4 | 5
- +
The sign of the expression (x-5)^2 * (x+3) * (x-4) is positive in the intervals (-∞, -3) and (5, ∞) because the test points in these intervals yielded positive values, while it is negative in the interval (-3, 4) because the test point in this interval yielded a negative value.
So, the solution to the inequality (x-5)^2 * (x+3) * (x-4) >= 0 is:
x in (-∞, -3] U [5, ∞)


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili