
Sinα*cosα-? sinα+cosα=0.2


Ответы на вопрос

Ответ:
-0,48
Пошаговое объяснение:
(sinα+cosα)^2=(0.2)^2
sin^2α+2sinαcosα+cos^2α=0.04
1+2sinαcosα=0.04
2sinαcosα=0,04-1
2sinαcosα=-0,96
sinαcosα=-0,96/2
sinαcosα=-0,48



To solve the equation sin(α) * cos(α) - sin(α) + cos(α) = 0.2, we can use some trigonometric identities and algebraic manipulation.
Let's factor out sin(α) and cos(α):
sin(α) * cos(α) - sin(α) + cos(α) = 0.2
sin(α) * cos(α) - (sin(α) - cos(α)) = 0.2
Now, we can use the Pythagorean identity for sine and cosine:
sin²(α) + cos²(α) = 1
Rearrange it:
sin²(α) = 1 - cos²(α)
Now, substitute this into the equation:
(sin²(α) - cos²(α)) - (sin(α) - cos(α)) = 0.2
Now, let's make a substitution to simplify further. Let y = cos(α):
(sin²(α) - y²) - (sin(α) - y) = 0.2
Now we have a quadratic equation in terms of y:
sin²(α) - y² - sin(α) + y - 0.2 = 0
Let's solve this quadratic equation for y using the quadratic formula:
y = [-b ± √(b² - 4ac)] / (2a)
In this case, a = 1, b = -1, and c = -0.2:
y = [1 ± √((-1)² - 4(1)(-0.2))] / (2(1))
y = [1 ± √(1 + 0.8)] / 2
y = [1 ± √1.8] / 2
Now, you have two possible values for y:
- y₁ = [1 + √1.8] / 2
- y₂ = [1 - √1.8] / 2
Now, remember that y = cos(α). So, for each value of y, you can find the corresponding values of α:
For y₁ = [1 + √1.8] / 2: α₁ = arccos([1 + √1.8] / 2)
For y₂ = [1 - √1.8] / 2: α₂ = arccos([1 - √1.8] / 2)
These are the solutions for α that satisfy the given equation. Please note that these solutions may not be unique, as trigonometric equations often have multiple solutions over a certain interval.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili