Монету подбрасывают 5 раз. Найти дисперсию и среднее квадратическое отклонение случайной величины Х
– выпадения герба.Ответы на вопрос
Ответ:
С 5 0 = 5!/0!(5-0)!= 1*2*3*4*5/1*1*2*3*4*5=1 то ест 1!
С 5 1 =5!/1!(5-1)!=1*2*3*4*5/1*1*2*3*4=5 то есть 5 !
и так далее!
P( 5 и 0)=1*1/2^0*1/2^5=1*1/32=1/32
P( 5 и 1)=5*1/2*1/2^4=5/2*1/16=5/32
P(5 и 6)=10*1/2^2*1/2^3=10/4*1/8=10/32
P(5 и 4)=10*1/2^3*1/2^2=10/8*1/4=10/32
P(5 и 5) =5*1/2^4*1/2=5/32
P( 5 и 5)=1*1/2^5*1/2^0=1/32
то есть вот и будет распрделение обычно ее в таблицу но можно и так
здесь C n k число сочетаний
число сочетаний по формуле чтобы понятней было
Пошаговое объяснение:
Ответ:
Дисперсия случайной величины, распределённой по биномиальному закону равна npq. В данном случае n=5, p=0,5, q=0,5
5
5
Для нахождения дисперсии и среднего квадратического отклонения случайной величины X, которая представляет собой количество выпадений герба при 5 подбрасываниях монеты, нужно знать вероятность выпадения герба в одном подбрасывании монеты. Пусть p - вероятность выпадения герба, тогда (1 - p) - вероятность выпадения решки.
Для броска монеты есть два исхода: герб или решка, каждый из которых имеет вероятность p и (1 - p) соответственно.
Случайная величина X - это сумма результатов 5 независимых бросков монеты. Это можно представить как биномиальное распределение с параметрами n = 5 (количество бросков) и p (вероятность выпадения герба в одном броске).
Дисперсия (Var) биномиального распределения вычисляется по формуле: Var(X) = n * p * (1 - p)
Среднее квадратическое отклонение (стандартное отклонение, σ) вычисляется как квадратный корень из дисперсии: σ = √Var(X)
Теперь давайте вычислим дисперсию и среднее квадратическое отклонение для данной случайной величины:
Найдем вероятность p. Обычно, для честной монеты p = 0.5 (50% вероятность выпадения герба), но если монета неравномерно взвешена, то вероятность может быть другой.
Дисперсия: Var(X) = 5 * p * (1 - p)
Среднее квадратическое отклонение: σ = √Var(X)
Подставьте значение p в формулу, и вы получите дисперсию и среднее квадратическое отклонение для случайной величины X.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
