
2.2. 18-3y - 3y <= 0 4y > 12


Ответы на вопрос

Ответ:
вот)
Пошаговое объяснение:




To solve the inequality 2.2 - 18y - 3y ≤ 0 and find when 4y > 12, you can follow these steps:
Step 1: Simplify the first inequality: 2.2 - 18y - 3y ≤ 0
Combine the like terms on the left side: 2.2 - 21y ≤ 0
Step 2: Now, solve for y by isolating y on one side of the inequality:
Subtract 2.2 from both sides to move the constant to the right side: -21y ≤ -2.2
Step 3: Divide both sides by -21. Since you're dividing by a negative number, you need to reverse the inequality sign:
y ≥ -2.2 / -21 y ≥ 0.10476190476 (approximately)
So, the solution for the first inequality is y ≥ 0.1048 (rounded to 4 decimal places).
Step 4: Now, let's solve the second inequality:
4y > 12
Divide both sides by 4 to isolate y: y > 12 / 4 y > 3
The solution for the second inequality is y > 3.
So, the combined solution for both inequalities is: y ≥ 0.1048 and y > 3
However, since these two inequalities have different solutions, you can express the solution set as two separate intervals:
- y ≥ 0.1048 (for the first inequality)
- y > 3 (for the second inequality)


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili