
Вопрос задан 26.09.2023 в 22:29.
Предмет Математика.
Спрашивает Синицина Елизавета.
Найти производную функции f(x) = lnx/4


Ответы на вопрос

Отвечает Фелиферова Анастасия.
Пошаговое объяснение:
константу 1/4 выносим за знак производной, и берем производную от логарифма натурального.
f'(x) = (lnx/4)'=(1/4)*(1/x)=1/(4х)
если аргумент логарифма х/4, то f'(x) = (ln(x/4))'=(1/4)*(4/x)=1/(х)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения производной функции используем правило дифференцирования функции , где - это аргумент функции, в данном случае :
Здесь - производная аргумента по отношению к .
В данном случае , поэтому .
Теперь мы можем вычислить производную функции :
Итак, производная функции равна .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili