
Середнє арифметичне двох чисел одне з яких у 4 рази більше за друге дорівнює 40 знайдіть ці числа


Ответы на вопрос

Відповідь: (4у + у) / 2 = 40.
Скоротимо дріб і помножимо обидві частини на 2:
5у = 80.
Поділимо обидві частини на 5:
у = 16.
Тепер підставимо значення у у перше рівняння:
х = 4 * 16 = 64.
Отже, перше число дорівнює 64, а друге число дорівнює 16
Покрокове пояснення:



Давайте позначимо два числа як x і y, де x - це число, яке у 4 рази більше за друге число y. Тоді ми можемо записати наступну систему рівнянь:
- x = 4y (одне число у 4 рази більше за інше).
- (x + y) / 2 = 40 (середнє арифметичне цих чисел дорівнює 40).
Зараз ми можемо використовувати перше рівняння для виразу x через y:
x = 4y
Тепер підставимо це значення x у друге рівняння:
(4y + y) / 2 = 40
Знайдемо суму виразів в чисельнику:
(5y) / 2 = 40
Тепер ми можемо помножити обидві сторони на 2, щоб позбутися ділення на 2:
5y = 80
Тепер поділимо обидві сторони на 5, щоб знайти значення y:
y = 80 / 5 y = 16
Отже, друге число y дорівнює 16.
Тепер ми можемо використовувати перше рівняння, щоб знайти значення x:
x = 4y x = 4 * 16 x = 64
Отже, перше число x дорівнює 64.
Отже, два числа це 64 і 16.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili