Вопрос задан 06.09.2023 в 23:57. Предмет Математика. Спрашивает Илясова Алина.

Биссектриса угла А параллелограмма АВСD пересекает сторону ВС в точке К. Найдите периметр

параллелограмма, если ВК=12, СК=16.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Карамзин Даниил.
ABCD-паралелограмм
BK=12
CK=16
AK-биссектриса
P=12+12+12+16+28=80
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем использовать свойство биссектрисы угла параллелограмма. Согласно этому свойству, биссектриса угла параллелограмма делит его стороны на отрезки, пропорциональные соответствующим сторонам параллелограмма.

Пусть стороны параллелограмма AB и CD имеют длины a и b соответственно. Тогда сторона BC также имеет длину a, и сторона AD имеет длину b.

Согласно свойству биссектрисы:

CK / KC = AB / AD

Известно, что CK = 12 и KC = 16. Подставим эти значения в уравнение:

12 / 16 = a / b

Упростим это уравнение:

3 / 4 = a / b

Теперь мы знаем, что a = (3/4) * b.

Периметр параллелограмма равен сумме длин всех его сторон:

P = 2a + 2b

Заменяем a на (3/4) * b:

P = 2 * (3/4) * b + 2b

Упростим это выражение:

P = (3/2) * b + 2b

Теперь можем найти периметр, подставив значение b:

P = (3/2) * 16 + 2 * 16 P = 24 + 32 P = 56

Итак, периметр параллелограмма ABCD равен 56 единицам длины.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос