To prove the equation cos2(x/2)sinx=4sin2(x/2), we can use the double-angle identities and the reciprocal identities for sine and cosine. Here's the step-by-step proof:
Step 1: Express cos2(x/2) in terms of sin(x/2) using the identity cos2θ=1−sin2θ.
cos2(x/2)=1−sin2(x/2)
Step 2: Substitute the expression for cos2(x/2) into the left side of the equation:
1−sin2(x/2)sinx=4sin2(x/2)
Step 3: Now, let's get rid of the fraction by multiplying both sides by 1−sin2(x/2):
sinx=4sin2(x/2)⋅(1−sin2(x/2))
Step 4: Simplify the right side using the identity (a2−b2)=(a+b)(a−b):
sinx=4sin2(x/2)⋅(1−sin2(x/2))
sinx=4sin2(x/2)⋅(1−sin(x/2))⋅(1+sin(x/2))
Step 5: Apply the identity sin2θ=21−21cos(2θ):
sinx=4(21−21cos(x))⋅(1+sin(x/2))
Step 6: Distribute and simplify further:
sinx=2−2cos(x)+2sin(x/2)−2sin(x/2)cos(x)
Step 7: Now, use the double-angle identity for sine: sin(2θ)=2sin(θ)cos(θ):
sinx=2−2cos(x)+2sin(x/2)−sin(x)
Step 8: Move the term −sin(x) to the left side:
sinx+sin(x)=2−2cos(x)+2sin(x/2)
Step 9: Combine like terms:
2sinx=2−2cos(x)+2sin(x/2)
Step 10: Divide both sides by 2:
sinx=1−cos(x)+sin(x/2)
Step 11: Finally, use the identity sin(x)=2sin(x/2)cos(x/2):
sinx=1−cos(x)+2sin(x/2)cos(x/2)
Step 12: Apply the double-angle identity for cosine: cos(2θ)=1−2sin2(θ):
sinx=1−cos(x)+2⋅21⋅(1+cos(x))
Step 13: Simplify:
sinx=1−cos(x)+1+cos(x)
Step 14: Combine like terms:
sinx=2
And there we have it: sinx=2.
However, it's important to note that there is a mistake in the proof, as the equation
0
0