
Вопрос задан 30.07.2023 в 01:07.
Предмет Математика.
Спрашивает Ермоченко Ульяна.
Log2(x^2-x+2) меньше 2


Ответы на вопрос

Отвечает Бабкова Вика.
X²-x+2<2²
x²-x+2-4<0
x²-x-2<0
x²-x-2+0
D=1+8=9
x=(1-3)\2=-1
x=(1+3)\2=2
ОДЗ : х∈(-∞;+∞)
х∈(-1;2)
x²-x+2-4<0
x²-x-2<0
x²-x-2+0
D=1+8=9
x=(1-3)\2=-1
x=(1+3)\2=2
ОДЗ : х∈(-∞;+∞)
х∈(-1;2)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the inequality , we need to find the values of that satisfy the inequality. Here's the step-by-step solution:
Step 1: Remove the logarithm by rewriting the inequality in exponential form:
Step 2: Simplify the right-hand side:
Step 3: Since , we can rewrite the inequality as:
Step 4: Move all terms to one side of the inequality:
Step 5: Factor the quadratic expression:
Step 6: Determine the sign of the expression for different intervals of :
Step 7: Find the intervals where (the expression is negative):
The expression is negative for .
Step 8: Finalize the solution:
The solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili