
(cos 23pi/12-sin 11pi/12)*(sin 17pi/12-cos19pi/12)


Ответы на вопрос

=(cos(2π-π/12)-sin(π-π/12))*
(sin(π+5π/12)-cos(2π-5π/12)=
(cosπ/12-sinπ/12)(-sin5π/12-cos5π/12)=
(cosπ/12-sinπ/12)(-sin(π/2-π/12)-
cos(π/2-π/12))==
(cosπ/12-sinπ/12)(-1)(cosπ/12+sinπ/12)=
-(cos²π/12-sin²π/12)=-cosπ/6=-√3/2



To find the value of the expression (cos(23π/12) - sin(11π/12)) * (sin(17π/12) - cos(19π/12))
, we'll break it down into simpler trigonometric expressions and then calculate each part step by step.
Step 1: Convert angles to their reference angles in the first quadrant. We can use the periodicity of trigonometric functions to convert the given angles to their reference angles in the first quadrant:
23π/12
is in the fourth quadrant, and its reference angle in the first quadrant is23π/12 - 2π = 11π/12
.11π/12
is also in the fourth quadrant, and its reference angle in the first quadrant is11π/12 - π = π/12
.17π/12
is in the third quadrant, and its reference angle in the first quadrant is17π/12 - π = 5π/12
.19π/12
is in the third quadrant, and its reference angle in the first quadrant is19π/12 - π = 7π/12
.
Now, the expression becomes:
(cos(11π/12) - sin(π/12)) * (sin(5π/12) - cos(7π/12))
.
Step 2: Calculate the trigonometric values of the reference angles. We can now evaluate the trigonometric values of the reference angles:
cos(11π/12)
andcos(7π/12)
are both values in the first quadrant, so they are positive.sin(π/12)
andsin(5π/12)
are both values in the first quadrant, so they are positive.
Step 3: Calculate the individual products. Now, let's calculate the individual products:
cos(11π/12) - sin(π/12) = cos(11π/12) - sin(π/12)
sin(5π/12) - cos(7π/12) = sin(5π/12) - cos(7π/12)
Step 4: Calculate the final result. Finally, we multiply the results of the individual products:
(cos(11π/12) - sin(π/12)) * (sin(5π/12) - cos(7π/12)) = (cos(11π/12) - sin(π/12)) * (sin(5π/12) - cos(7π/12))
Since we can't simplify it further without more precise numerical values, this is the final result for the given expression.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili