
Решите уравнение: arcsin x · arccos x = −1;


Ответы на вопрос





To solve the equation arcsin(x) · arccos(x) = -1, we need to find the value of x that satisfies the equation. Let's proceed with the solution step by step.
Step 1: Recognize the domain of the functions arcsin(x) and arccos(x). The domain of arcsin(x) is [-1, 1], and the domain of arccos(x) is also [-1, 1].
Step 2: Write the equation. arcsin(x) · arccos(x) = -1
Step 3: Use the definition of inverse trigonometric functions. The arcsin(x) function returns an angle whose sine is x, and the arccos(x) function returns an angle whose cosine is x.
Step 4: Find the value of x. Since arcsin and arccos are inverses of each other, we can rewrite the equation as follows: arcsin(arccos(x)) = -1
Step 5: Solve for arccos(x) first. Since the range of arccos(x) is [0, π], the only solution for the equation arcsin(arccos(x)) = -1 is when arccos(x) = cos(-1) = π.
Step 6: Solve for x. Now that we know arccos(x) = π, we can find x using the definition of arccos: x = cos(π)
However, there is a problem here. The value of cos(π) is -1, but remember that the domain of arccos(x) is [0, π]. Therefore, x = -1 is not a valid solution.
Step 7: No solution. Since there is no valid solution for x in the domain of both arcsin(x) and arccos(x), the given equation arcsin(x) · arccos(x) = -1 has no solution.
Final Answer: The equation has no solution in the given domain.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili