Log(2) (x+5)- log(2) (x-1) > 1
Ответы на вопрос
        ОДЗ: x>-5, x>1. x∈(1;+∞)
log2((x+5)/(x-1))>1
log2((x+5)/(x-1))>log2(2)
(x+5)/(x-1)>2
(x+5-2x+2)/(x-1)>0
(7-x)/(x-1)>0
методом интервалов получаем ответ: x∈(1;7)
            To solve the inequality , we can use logarithmic properties to simplify it. The properties we will use are:
- If , then
 
Let's apply these properties step-by-step:
Step 1: Apply the first property to combine the logarithms:
Step 2: Apply the second property:
Step 3: Now, let's solve for by isolating it on one side of the inequality. First, let's multiply both sides by :
Step 4: Distribute on the right side:
Step 5: Move to the left side and to the right side:
Step 6: To solve for , multiply both sides by (which reverses the inequality):
So, the solution to the inequality is . However, when dealing with logarithmic inequalities, we need to be cautious about the domain of the logarithmic expression.
Recall that for a logarithm to be defined, the argument (what's inside the logarithm) must be greater than zero. So, and must be greater than zero:
Thus, the valid range for is since we need both and to be positive.
Therefore, the final solution to the inequality is .
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			