
Log(2) (x+5)- log(2) (x-1) > 1


Ответы на вопрос

ОДЗ: x>-5, x>1. x∈(1;+∞)
log2((x+5)/(x-1))>1
log2((x+5)/(x-1))>log2(2)
(x+5)/(x-1)>2
(x+5-2x+2)/(x-1)>0
(7-x)/(x-1)>0
методом интервалов получаем ответ: x∈(1;7)



To solve the inequality , we can use logarithmic properties to simplify it. The properties we will use are:
- If , then
Let's apply these properties step-by-step:
Step 1: Apply the first property to combine the logarithms:
Step 2: Apply the second property:
Step 3: Now, let's solve for by isolating it on one side of the inequality. First, let's multiply both sides by :
Step 4: Distribute on the right side:
Step 5: Move to the left side and to the right side:
Step 6: To solve for , multiply both sides by (which reverses the inequality):
So, the solution to the inequality is . However, when dealing with logarithmic inequalities, we need to be cautious about the domain of the logarithmic expression.
Recall that for a logarithm to be defined, the argument (what's inside the logarithm) must be greater than zero. So, and must be greater than zero:
Thus, the valid range for is since we need both and to be positive.
Therefore, the final solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili