
Log (0,7) 2x-1/x-1 >=0


Ответы на вопрос





To solve the inequality , we need to find the values of that satisfy this inequality.
Step 1: Domain Restriction First, note that the logarithm function is only defined when and since the base of the logarithm (0.7 in this case) must be positive, and the argument of the logarithm (in this case, ) must be positive. Therefore, we need to find the values of that make the argument of the logarithm positive.
Step 2: Determine the Sign of the Argument of the Logarithm To find when the argument of the logarithm is positive, set the argument greater than zero and solve for :
Step 3: Find Critical Points To find critical points, set the numerator and denominator equal to zero and solve for :
Step 4: Sign Analysis of the Inequality Now, let's perform a sign analysis on the inequality by considering different intervals of :
Interval 1: Choose a test point (e.g., ), then
Interval 2: Choose a test point such that (e.g., ), then
Interval 3: Choose a test point (e.g., ), then
Step 5: Combine Intervals We found that for and and .
Step 6: Final Solution Since the inequality is , the solution is all values of in the combined intervals where the argument of the logarithm is positive:
for and
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili