
U=lntg(y/x) найти d2u/dx2


Ответы на вопрос




To find the second derivative of the function U with respect to x, we'll first need to find the first derivative of U with respect to x, and then take its derivative again.
Given: U = ln(tg(y/x))
Step 1: Find the first derivative of U with respect to x (du/dx). Step 2: Find the second derivative of U with respect to x (d^2u/dx^2).
Let's proceed with Step 1:
Step 1: Find du/dx
To find du/dx, we'll use the chain rule. The chain rule states that if we have a function U = f(g(x)), then the derivative of U with respect to x is given by dU/dx = f'(g(x)) * g'(x).
In our case, f(u) = ln(u) and g(x) = tg(y/x). Let's find f'(u) and g'(x):
f'(u) = d/du [ln(u)] = 1/u g'(x) = d/dx [tg(y/x)]
Now, apply the chain rule:
du/dx = f'(g(x)) * g'(x) du/dx = (1/tg(y/x)) * d/dx [tg(y/x)]
To find d/dx [tg(y/x)], we'll use trigonometric identities. The derivative of tangent is:
d/dx [tg(u)] = sec^2(u) * du/dx
In our case, u = y/x:
d/dx [tg(y/x)] = sec^2(y/x) * d/dx [y/x]
d/dx [y/x] can be found using the quotient rule:
d/dx [y/x] = (x * d/dx[y] - y * d/dx[x]) / x^2
However, since y is a constant with respect to x (y does not depend on x), its derivative is zero:
d/dx [y] = 0
Therefore, d/dx [y/x] = 0, and the equation simplifies to:
d/dx [tg(y/x)] = 0
Now, we can go back to the expression for du/dx:
du/dx = (1/tg(y/x)) * 0 = 0
Step 1 is complete. We found that du/dx = 0.
Step 2: Find d^2u/dx^2
Now, to find the second derivative d^2u/dx^2, we need to take the derivative of du/dx (which we found to be 0) with respect to x:
d^2u/dx^2 = d/dx [du/dx]
Since du/dx is constant (0), the derivative of a constant with respect to x is 0:
d/dx [du/dx] = d/dx [0] = 0
Thus, the second derivative d^2u/dx^2 is 0.
In summary:
U = ln(tg(y/x)) du/dx = 0 d^2u/dx^2 = 0


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili