Вычислите : 16^3/2-(1/9)^-1/2+27^2/3
Ответы на вопрос
To calculate the expression, follow the order of operations (PEMDAS/BODMAS):
P - Parentheses/Brackets E - Exponents/Orders MD - Multiplication and Division (from left to right) AS - Addition and Subtraction (from left to right)
Let's break down the expression step-by-step:
Calculate the exponents: 16^3 = 16 * 16 * 16 = 4096 (since 16 raised to the power of 3 means 16 multiplied by itself 3 times) (1/9)^(-1/2) = 1 / √(1/9) = 1 / (1/3) = 3 (since the square root of 1/9 is 1/3, and raising it to -1 means taking its reciprocal)
Now, the expression becomes: 4096/2 - 3 + 27^(2/3)
Calculate division and multiplication (from left to right): 4096/2 = 2048 (since 4096 divided by 2 is 2048)
The expression now becomes: 2048 - 3 + 27^(2/3)
Calculate 27^(2/3): 27^(2/3) = ∛(27^2) = ∛(729) = 9 (since the cube root of 27^2 is 9)
Now, the expression becomes: 2048 - 3 + 9
Finally, perform addition and subtraction: 2048 - 3 + 9 = 2054
So, the value of the expression is 2054.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
