
Построить вектор, соответствующий числу z=6i^65-3i^120


Ответы на вопрос

Решение в приложении




Для построения вектора, соответствующего числу z = 6i^65 - 3i^120, нужно преобразовать выражение и определить его действительную и мнимую части.
Здесь i обозначает мнимую единицу, которая определяется как i^2 = -1. Также стоит заметить, что для любого целого числа n, i^(4n) = 1, i^(4n+1) = i, i^(4n+2) = -1 и i^(4n+3) = -i.
Рассмотрим первую часть выражения: 6i^65. Так как i^65 = i^(4*16 + 1) = i, то 6i^65 = 6i.
Теперь рассмотрим вторую часть выражения: -3i^120. Так как i^120 = i^(4*30) = 1, то -3i^120 = -3.
Теперь объединим полученные части:
z = 6i - 3.
Таким образом, комплексное число z записывается как z = 6i - 3, где действительная часть равна -3, а мнимая часть равна 6. Для представления числа вектором, просто укажем действительную и мнимую части вектора:
Вектор z = (-3, 6).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili