
4sin^2 x + 5sin x < 0


Ответы на вопрос

4sin²x + 5sinx < 0
sinx(4sinx + 5) < 0
Найдем нули:
sinx = 0
4sinx + 5 = 0
sinx = -5/4 -- не удовл., т.к. -1 ≤ sinx ≤ 1
=> sinx < 0
x ∈ (π + 2πn; 2π + 2πn)



To solve the inequality , we need to find the values of that satisfy the inequality. Here's how we can do that:
Step 1: Factor the expression if possible. The inequality doesn't factor easily, so we'll use an alternative approach.
Step 2: Rewrite the inequality in terms of a single trigonometric function. Notice that the inequality involves only one trigonometric function, . We can simplify it by factoring out :
Step 3: Find critical points. The inequality is satisfied when either or . Let's find the critical points for both conditions:
Condition 1: is negative in the third and fourth quadrants.
Condition 2: Subtract 5 from both sides: Divide by 4 (remembering to reverse the inequality since we are dividing by a negative number):
Step 4: Find the solution in the given range. The range for is not specified in the question, so we'll consider the full range of .
For , should be in the third and fourth quadrants.
For , should also be in the third and fourth quadrants.
Step 5: Final solution The solution to the inequality is the intersection of the solutions for and . Therefore, the solution is all values of in the third and fourth quadrants.
In interval notation, the solution is:
In degrees, the solution is:


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili