Вопрос задан 29.07.2023 в 04:32. Предмет Математика. Спрашивает Шевченко Катерина.

При каких значениях b уравнения |x^2-5x+6|=b имеет ровно 3 решения

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ткаченко Влад.

При условии,что  b>0  возведем в квадрат обе части уравнения, имеем:

 (x^2-5x+6)^2=b^2\\ (x^2-5x+6)^2-b^2=0\\ (x^2-5x+6+b)(x^2-5x+6-b)=0

Произведение равно нулю, если хотя бы один из множителей равен нулю.

 x^2-5x+6+b=0~~~\big(\star\big)\\ x^2-5x+6-b=0\big(\star \star\big)

Это уравнение будет иметь три решения, если один из этих уравнений D>0 и D=0


Найдем дискриминант квадратного уравнения  \big(\star\big)

 D=25-4(6+b)=25-24-4b=1-4b

и уравнения  \big(\star \star\big)

 D=25-4(6-b)=25-24+4b=1+4b



 \displaystyle \left \{ {{1-4b>0} \atop {1+4b=0}} \right. ~~~\Rightarrow~~~\left \{ {{b


или


 \displaystyle \left \{ {{1-4b=0} \atop {1+4b>0}} \right. ~~~\Rightarrow~~~ \left \{ {{b=0.25} \atop {b>-0.25}} \right. ~~~\Rightarrow~~~ b=0.25


Значение b = -0.25 не удовлетворяет условию, ведь b > 0.

Ответ: b =  0,25.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дано уравнение вида |x^2 - 5x + 6| = b.

Для того чтобы это уравнение имело ровно 3 решения, общее количество решений должно быть нечетным (равным 3) и уравнение должно иметь хотя бы одно действительное решение.

  1. Первым шагом рассмотрим действительные корни уравнения x^2 - 5x + 6 = b: Решим уравнение x^2 - 5x + 6 - b = 0, чтобы найти действительные значения x:

Дискриминант D для этого уравнения будет: D = (-5)^2 - 4 * 1 * (6 - b) = 25 - 24 + 4b = 1 + 4b.

Уравнение имеет два действительных корня, если D > 0, и один действительный корень, если D = 0.

  1. Теперь рассмотрим случай, когда D > 0, чтобы у уравнения было два действительных корня: D = 1 + 4b > 0 4b > -1 b > -1/4

Таким образом, уравнение |x^2 - 5x + 6| = b имеет ровно 3 решения при значениях b, которые больше чем -1/4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос