
Log2(x+2) / log2(x-1) < 2


Ответы на вопрос





To solve the inequality , we need to be careful with the domain of the logarithmic functions. The domain of the logarithm requires that the argument of the logarithm must be positive, so we have two cases to consider for this inequality:
Case 1: (since ) Case 2:
Now, let's proceed with each case separately:
Case 1: In this case, both and are defined, and we can manipulate the inequality as follows:
Using the property of logarithms that is equivalent to , we can rewrite the inequality as:
Simplify further:
Thus, for Case 1, the solution is .
Case 2: In this case, both and are still defined, and we can manipulate the inequality similarly:
Using the property of logarithms again:
Simplify further:
Since the solution is valid in both cases, the combined solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili