
S={х:(x=n²)^(nєN)} Доказать, что єсли хєS то (x+2√x+1) є S


Ответы на вопрос

Пусть х∈S, т.е. х можно представить в виде х = р², где р ∈ N
Тогда х + 2√х + 1 = р² + 2р + 1 = (р + 1)² ∈ S



To prove that if x ∈ S, then (x + 2√x + 1) ∈ S, we need to show that if x is a perfect square raised to the power of a natural number, then (x + 2√x + 1) is also a perfect square raised to the power of a natural number.
Let's start by expressing x in terms of n:
x = n^2^n
Now, we want to show that (x + 2√x + 1) is also of the form m^k, where m is a natural number and k is a natural number.
(x + 2√x + 1) = (n^2^n + 2√(n^2^n) + 1)
Now, let's simplify 2√(n^2^n):
2√(n^2^n) = 2 * n^(2^n / 2)
Now, we can rewrite (x + 2√x + 1) as:
(x + 2√x + 1) = (n^2^n + 2 * n^(2^n / 2) + 1)
Now, let's try to factor this expression and see if it matches the form m^k for some natural numbers m and k:
(x + 2√x + 1) = (n^(2^n) + 2 * n^(2^n / 2) + 1)
Let's notice that this expression is in the form of a perfect square:
(x + 2√x + 1) = (n^(2^n / 2) + 1)^2
Now, we need to check if n^(2^n / 2) + 1 can be expressed as m^k for some natural numbers m and k. For this, we need to show that 2^n / 2 is a whole number.
Since n is a natural number, 2^n is also a natural number. And when we divide a natural number by 2, we get either an integer (if n is even) or a number with a fractional part of 0.5 (if n is odd). In our case, n is raised to a power, so n can't be fractional; it is always an integer.
Thus, 2^n is always even, and 2^n / 2 is always an integer. Let's say 2^n / 2 = k, where k is a natural number.
Now, we can rewrite (x + 2√x + 1) as:
(x + 2√x + 1) = (n^(2^n / 2) + 1)^2 = (n^k + 1)^2
Now, (x + 2√x + 1) is indeed in the form of m^k, where m = n^k + 1 and k = 2. Both m and k are natural numbers because n and k are natural numbers.
Therefore, we have shown that if x ∈ S (x is a perfect square raised to the power of a natural number), then (x + 2√x + 1) ∈ S (it is also a perfect square raised to the power of a natural number).


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili