Вопрос задан 25.07.2023 в 01:51. Предмет Математика. Спрашивает Ивашин Серёжа.

Сколько существует целых положительных чисел таких, что и при умножении и делении этих чисел на 2

получается целое и при этом двузначное число?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ганин Никита.

Ответ:

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

всего 15 чисел (если я правильно понял задание)

Пошаговое объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с условием задачи.

Итак, у нас есть некое целое положительное число x, которое удовлетворяет следующим условиям:

  1. При умножении на 2, число остается целым и двузначным.
  2. При делении на 2, число также остается целым и двузначным.

Двузначное число - это число от 10 до 99.

Давайте рассмотрим числа, удовлетворяющие условию умножения на 2:

10 * 2 = 20 (Целое и двузначное) 11 * 2 = 22 (Целое и двузначное) 12 * 2 = 24 (Целое и двузначное) ... 48 * 2 = 96 (Целое и двузначное) 49 * 2 = 98 (Целое и двузначное)

Таким образом, все числа от 10 до 49 подходят под условие умножения на 2.

Теперь рассмотрим числа, удовлетворяющие условию деления на 2:

20 / 2 = 10 (Целое и двузначное) 22 / 2 = 11 (Целое и двузначное) 24 / 2 = 12 (Целое и двузначное) ... 96 / 2 = 48 (Целое и двузначное) 98 / 2 = 49 (Целое и двузначное)

Таким образом, все числа от 20 до 98 подходят под условие деления на 2.

Теперь нам нужно найти пересечение этих двух интервалов, чтобы найти числа, которые удовлетворяют обоим условиям:

Пересечение: [max(10, 20), min(49, 98)] = [20, 49]

Итак, существует 30 целых положительных чисел, удовлетворяющих условиям задачи: от 20 до 49 включительно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос