
X+y=0 sin^2x+sin^2y=1/2


Ответы на вопрос

x+y+0+sin y^2=1/2
x+y+siny^2=1/2
x=1/2-y-siny^2
x=1/2-y-siny^2;y €R



To find the values of x and y that satisfy the given system of equations, we can use the fact that sin^2(x) + sin^2(y) = 1. We are given sin^2(x) + sin^2(y) = 1/2, which means sin^2(x) + sin^2(y) = sin^2(1) (since 1/2 = sin^2(1)).
Now let's solve the system of equations:
- x + y = 0
- sin^2(x) + sin^2(y) = sin^2(1)
From equation 1, we can express y in terms of x: y = -x.
Substitute y = -x into equation 2:
sin^2(x) + sin^2(-x) = sin^2(1)
Using the trigonometric identity sin^2(x) + cos^2(x) = 1, we can rewrite the equation:
sin^2(x) + (1 - sin^2(x)) = sin^2(1)
Simplify:
2sin^2(x) - 1 = sin^2(1)
Now, solve for sin^2(x):
2sin^2(x) = sin^2(1) + 1 sin^2(x) = (sin^2(1) + 1) / 2
Since 0 <= sin^2(x) <= 1, sin^2(1) + 1 must be less than or equal to 2.
sin^2(x) = (sin^2(1) + 1) / 2 <= 2 / 2 = 1
So, (sin^2(1) + 1) / 2 = 1, and sin^2(1) + 1 = 2.
Now, plug sin^2(1) + 1 back into the equation:
2sin^2(x) - 1 = sin^2(1) 2sin^2(x) - 1 = 2
Now, solve for sin^2(x):
2sin^2(x) = 2 + 1 2sin^2(x) = 3 sin^2(x) = 3/2
However, there's a problem here because sin^2(x) cannot be greater than 1. This means there are no real solutions for x and y that satisfy the given system of equations. The system appears to be inconsistent. Double-checking the system of equations or confirming the values might be necessary.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili