
Если log(3)4=a и log(5)4=b то найдите log(9)100


Ответы на вопрос





To find the value of log(9)100, we can use logarithm properties to rewrite it in terms of a and b.
Step 1: Express 100 as a power of 9 and 4: 100 = 10^2 = (9*4)^2 = 9^2 * 4^2
Step 2: Use the property of logarithms: log_b(xy) = log_b(x) + log_b(y)
log(9)100 = log(9)(9^2 * 4^2) = log(9)(9^2) + log(9)(4^2)
Step 3: Use the property of logarithms: log_b(b^a) = a
log(9)100 = 2 + log(9)(4^2)
Step 4: Use the given information log(3)4=a and log(5)4=b:
Since 4 = 2^2, we can express log(9)(4^2) as log(9)(2^(2*2)).
Now, use the property of logarithms: log_b(x^a) = a * log_b(x)
log(9)(4^2) = 2 * log(9)2
Step 5: Substituting the given information:
log(9)100 = 2 + 2 * log(9)2
Now, we need to express log(9)2 in terms of a and b.
Step 6: Use the change of base formula for logarithms:
log(9)2 = log(2)2 / log(2)9
We know that log(3)4 = a and log(5)4 = b.
Step 7: Express log(2)9 in terms of a and b:
log(2)9 = log(2)(3^2) = 2 * log(2)3
Step 8: Express log(2)3 in terms of a:
log(2)3 = log(2)(2^a) = a * log(2)2
Step 9: Substitute the value of log(2)3 into log(2)9:
log(2)9 = 2 * log(2)3 = 2 * (a * log(2)2) = 2a * log(2)2
Step 10: Substitute log(2)9 back into the expression for log(9)2:
log(9)2 = log(2)2 / log(2)9 = log(2)2 / (2a * log(2)2) = 1 / (2a)
Step 11: Substitute log(9)2 back into the expression for log(9)100:
log(9)100 = 2 + 2 * log(9)2 = 2 + 2 * (1 / (2a)) = 2 + 1 / a
So, the final answer is log(9)100 = 2 + 1 / a.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili