
Найти y’ и y’’ y2 = x + ln(y/x)


Ответы на вопрос




To find the first and second derivatives of y with respect to x, we'll start by differentiating the given equation y^2 = x + ln(y/x) with respect to x. Let's proceed step by step.
Given equation: y^2 = x + ln(y/x)
Step 1: Differentiate both sides of the equation with respect to x using the chain rule.
d/dx(y^2) = d/dx(x) + d/dx(ln(y/x))
Step 2: Apply the chain rule and the derivative of the natural logarithm.
2y * dy/dx = 1 + (1/x) * (y * dy/dx - y'/x)
Step 3: Now, solve for dy/dx (the first derivative).
2y * dy/dx = 1 + (1/x) * (y * dy/dx - y'/x) 2y * dy/dx = 1 + (1/x) * (y * dy/dx) - y'/x dy/dx * (2y - (1/x) * y) = 1 - (1/x) * y' dy/dx = (1 - (1/x) * y') / (2y - (1/x) * y)
Step 4: Now, to find the second derivative, differentiate the expression obtained for dy/dx once again with respect to x:
y'' = d/dx(dy/dx)
y'' = d/dx[(1 - (1/x) * y') / (2y - (1/x) * y)]
Step 5: Use the quotient rule and the chain rule to find the second derivative.
y'' = [(2y - (1/x) * y) * d/dx(1 - (1/x) * y') - (1 - (1/x) * y') * d/dx(2y - (1/x) * y)] / (2y - (1/x) * y)^2
Step 6: Simplify the expression for y''.
y'' = [(2y - (1/x) * y) * (y'' * x - y' + (1/x^2) * y') - (1 - (1/x) * y') * (2dy/dx - (1/x) * dy/dx)] / (2y - (1/x) * y)^2
Now we have the expressions for both the first derivative (dy/dx) and the second derivative (y''). The calculations can become quite complex, and it's important to double-check the algebra to ensure accuracy. If you have specific values for x and y or further instructions, I can help you perform the actual calculations.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili