
Cos x = - 1/2........


Ответы на вопрос

к принадлежит множеству целых чисел



To find the solutions for the equation cos(x) = -1/2, we need to determine the angles whose cosine value is -1/2. In the unit circle, the cosine function represents the x-coordinate of a point on the circle.
The unit circle is a circle with a radius of 1, centered at the origin (0, 0) in the coordinate plane.
For cos(x) = -1/2, there are two angles in the interval [0, 2π] that satisfy this equation. These angles are in the second and third quadrants where the x-coordinate is negative:
- First solution (in the second quadrant): To find the first solution, we use the inverse cosine function (arccos or cos^(-1)) and evaluate it for -1/2:
x₁ = arccos(-1/2) ≈ 2.094 radians ≈ 120 degrees (rounded to the nearest degree).
- Second solution (in the third quadrant): For the second solution, we can use the symmetry of the unit circle in the third quadrant:
x₂ = π - x₁ ≈ 3.142 - 2.094 ≈ 1.048 radians ≈ 60 degrees (rounded to the nearest degree).
So, the solutions for the equation cos(x) = -1/2 are approximately x = 2.094 radians (or 120 degrees) and x = 1.048 radians (or 60 degrees). Keep in mind that there are infinitely many solutions to this equation, but these are the primary solutions within the interval [0, 2π].


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili