
\frac{a}{a-5}-\frac{a^2}{a^2-10a+25}


Ответы на вопрос




To simplify the given expression, we need to find a common denominator for both fractions and then combine them. Let's proceed step by step:
Factorize the denominators: The denominator of the first fraction is already in its simplest form: (a - 5). The denominator of the second fraction is a quadratic expression, and it can be factored as follows: a^2 - 10a + 25 = (a - 5)(a - 5)
Write the fractions with the common denominator: The common denominator for both fractions is (a - 5)(a - 5).
Rewrite the numerators with the common denominator: For the first fraction, we need to multiply the numerator by (a - 5)/(a - 5): \frac{a}{a - 5} = \frac{a \cdot (a - 5)}{(a - 5)(a - 5)} = \frac{a^2 - 5a}{(a - 5)(a - 5)}
For the second fraction, we need to multiply the numerator by (a - 5)/(a - 5)(a - 5): \frac{a^2}{a^2 - 10a + 25} = \frac{a^2}{(a - 5)(a - 5)} = \frac{a^2}{(a - 5)^2}
Combine the fractions: \frac{a}{a - 5} - \frac{a^2}{a^2 - 10a + 25} = \frac{a^2 - 5a}{(a - 5)(a - 5)} - \frac{a^2}{(a - 5)^2}
Find a common denominator again (since the current denominators are the same): The common denominator is (a - 5)(a - 5).
Combine the numerators: \frac{a^2 - 5a}{(a - 5)(a - 5)} - \frac{a^2}{(a - 5)^2} = \frac{(a^2 - 5a) - a^2}{(a - 5)^2}
Simplify the numerator: (a^2 - 5a) - a^2 = -5a
Final result: \frac{a}{a - 5} - \frac{a^2}{a^2 - 10a + 25} = \frac{-5a}{(a - 5)^2}
So, the simplified expression is \frac{-5a}{(a - 5)^2}.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili