
Найти d²z: z=tg(3x·y)


Ответы на вопрос





To find the second derivative of z with respect to x, denoted as d²z/dx², we'll need to take the derivative of z with respect to x twice. Let's start with the first derivative:
Given: z = tan(3xy)
Step 1: Find dz/dx (the first derivative of z with respect to x) To find dz/dx, we use the chain rule. The chain rule states that for a function u = g(v) and v = h(x), the derivative of u with respect to x is du/dx = g'(v) * h'(x).
Let u = z, g(v) = tan(v), and v = 3xy. Now, we find the derivative of g(v) = tan(v), which is g'(v) = sec^2(v).
The derivative of v with respect to x, h'(x), is 3y.
So, dz/dx = sec^2(3xy) * 3y.
Step 2: Find d²z/dx² (the second derivative of z with respect to x) Now, we need to find the second derivative by differentiating dz/dx with respect to x.
Using the chain rule again, the derivative of dz/dx with respect to x is: d²z/dx² = d/dx (dz/dx) = d/dx (sec^2(3xy) * 3y).
Now, we find the derivative of sec^2(3xy) with respect to x. The derivative of sec^2(u) is 2sec(u) * tan(u).
So, d²z/dx² = d/dx (sec^2(3xy) * 3y) = 2 * sec(3xy) * tan(3xy) * d/dx(3y).
The derivative of 3y with respect to x is zero since y is a constant with respect to x.
Therefore, the second derivative d²z/dx² is simply:
d²z/dx² = 2 * sec(3xy) * tan(3xy) * 0 = 0.
Thus, the second derivative d²z/dx² is equal to 0.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili