
Вопрос задан 16.07.2023 в 12:08.
Предмет Математика.
Спрашивает Аносова Екатерина.
Найти значение производной в точке f(x)=4/x-3; x0=2


Ответы на вопрос

Отвечает Фролова Анна.
Ответ: ролизводная равна - 4/(х-3)^2, при х=2 имеем - 4/(-1)^2=-4/1=-4.
Пошаговое объяснение:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти значение производной функции f(x) = 4/x - 3 в точке x₀ = 2, мы должны вычислить производную функции и подставить значение x₀.
Первым шагом найдем производную функции f(x). Для этого используем правило дифференцирования функции вида f(x) = a/x, где a - константа:
f'(x) = -a/x².
В нашем случае a = 4, поэтому:
f'(x) = -4/x².
Теперь подставим x = 2 в выражение для производной:
f'(2) = -4/2² = -4/4 = -1.
Таким образом, значение производной функции f(x) = 4/x - 3 в точке x₀ = 2 равно -1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili